The Thermodynamic Properties of Isotopic Substances.

Liversidge Lecture, Delivered before the Chemical Society in the Royal Institution on December 18th, 1946.

By Harold C. Urey.
(Institute of Nuclear Studies, University of Chicago.)

The discovery of the isotopes of the elements resulted from the careful study of the properties of radioactive substances during the first years of this century. The conclusion that certain species of atoms had identical chemical properties but different radioactive properties came from chemical studies which accompanied the study of radioactivity. Boltwood ${ }^{1}$ noted that thorium and ionium were very similar in chemical properties, so similar, in fact, that he was unable to separate them if they were mixed. Marckwald and Keetman ${ }^{2}$ investigated this problem with greater care, as did Auer v . Welsbach ${ }^{3}$, and all these authors came to the conclusion that ionium and thorium are identical in chemical properties. Further, Marckwald ${ }^{4}$ and Soddy ${ }^{5}$ showed that radium and mesothorium constitute another such pair of substances. At present many such radio-elements which are chemically the same elements or are identical with nonradioactive elements are known. Soddy was able to conclude that this occurrence of two or more varieties of elements of identical chemical properties was probably of general occurrence, and that such identical elements differed in atomic weight as well as radioactive properties, and Sir J. J. Thompson proved that such isotopes existed in the case of stable atoms as well and detected them by the action of electric and magnetic fields on beams of ionized atoms which separated the atoms of different atomic weights. The outstanding work of Aston then gave us an extensive knowledge of the isotopes of the elements and their exact masses, and this has been followed by many researches which have completed or nearly completed our knowledge of this field.

Lindemann ${ }^{6}$ first applied statistical mechanical methods to the problem of chemical differences of isotopes. He applied these calculations to the differences in vapour pressures of the lead isotopes and showed that considerable differences should exist if the half quantum of zero point energy were not present. Since experiments showed no difference in vapour pressure, he concluded that the half quantum of zero point energy must exist. Neither the method of calculation nor the conclusions have been changed by any work since this pioneer work of Lindemann, but it is unfortunate that this work was done on a heavy element, for all differences in chemical properties of isotopic compounds diminish rapidly with increasing atomic weight. Had these experiments been applied to water, using precision methods for determining density, positive results would have been secured.

Keesom and van Dijk ${ }^{7}$ did demonstrate that differences in the vapour pressures of the neon isotopes exist by fractionally distilling liquid neon at $-248 \cdot 4^{\circ}$, and partially separated the neon isotopes in considerable quantity by this method. Urey, Brickwedde, and Murphy ${ }^{8}$ showed that a large difference in the vapour pressures of the isotopic molecules of hydrogen, H_{2} and HD, was to be expected even though the zero point energy was assumed, and concentrated the heavy isotope of hydrogen sufficiently to make its detection possible. Also, Lewis and Cornish ${ }^{9}$ demonstrated the existence of vapour-pressure differences between the isotopic molecules, $\mathrm{H}_{2} \mathrm{O}^{16}, \mathrm{D}_{2} \mathrm{O}^{16}$, and $\mathrm{H}_{2} \mathrm{O}^{18}$. Urey and Rittenberg ${ }^{10}$ showed from theoretical calculations that marked differences in the equilibrium constants of exchange reactions between hydrogen and deuterium on the one hand, and the hydrogen and deuterium compounds of the halogens on the other should exist, and Farkas and Farkas ${ }^{11}$ applied the same methods to exchanges with water. Urey and Greiff ${ }^{12}$ then applied the same methods to exchange reactions involving other isotopes. These researches first established the existence of comparatively large differences in properties of the hydrogen and deuterium compounds and of smaller but definite differences in the chemical properties of other isotopic compounds of elements of low atomic weight.

The marked differences in chemical properties of protium and deuterium and their compounds stimulated many researches on these substances during the 'thirties, and a very considerable literature on them exists at the present time. It is not the purpose of this paper to review this literature in detail, but rather to review a limited amount of this interesting work in relation to similar work on the isotopic compounds of other elements where the effects observed are much smaller. Also, the present paper is limited to equilibrium properties and does not include work dealing with differences related to the kinetics of chemical reactions. These latter effects
are largely unknown for isotopic compounds other than those of hydrogen except in so far as they relate to properties directly related by simple kinetic theory to molecular weights, as in the case of diffusion processes, or to molecular weights and forces between molecules, as in the case of the thermal diffusion method of separating isotopes, where the emphasis has largely been on the separation problem rather than on the fundamental properties of substances.

The theory of these differences in thermodynamic properties of isotopic compounds is well known in special cases and not in others. The physical properties of the elementary hydrogens, $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2}, have been extensively studied ${ }^{13}$ and the vapour pressure of protium tritide, HT, in its solution in natural hydrogen has been determined at one temperature. ${ }^{14}$ The differences in vapour pressures are large and the heat capacity measurements on $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2} show that the Debye frequencies are so large that the heat capacities of the condensed phases are much less than those expected for high temperatures. This makes the differences in vapour pressures understandable in a qualitative way, though quantitative agreement is not secured since the Debye 0 's are not inversely proportional to the molecular weights. Other attempts to correlate these properties have been made by Bijl and Hobbs ${ }^{15}$ and better but not completely satisfactory agreement secured.

The differences in the vapour pressures of other compounds of protium and deuterium have been observed but no satisfactory theory with regard to these differences exists. With the exception of the hydrogens and the neons, none of these vapour pressure differences can be satisfactorily related to the translational or sound vibrations of the solids or liquids. The isotopic compounds of the hydrogens differ in heats of fusion, vaporisation, molar volumes, heats of solution and many other ways. These differences in the hydrogen compounds have prompted the study of similar differences between the isotopic compounds of other elements, and though the differences are very much smaller, they show similarities to the differences in the hydrogen compounds. These differences in the case of hydrogen as well as other of the lighter elements could not have been overlooked during the 19th century had there not been a sort of conspiracy in Nature which prevented their observation until other evidence indicated both the existence of isotopes and their chemical differences. Thus the hydrogen isotopes and their compounds are markedly different, but the extreme rarity of the heavy isotope prevented the observation of these differences. Similarly, carbon, nitrogen, and oxygen should show variations in their atomic weights, but the rarity of their isotopes makes observation difficult, though not at all impossible in the case of oxygen because of the great sensitivity with which the density of water may be determined. Variations in the properties of the compounds of lithium and boron are difficult to detect because of the general chemical character of their compounds, or failure to study them as quantitatively as the compounds of other elements have been covered. Only in the case of oxygen and chlorine should the variations of atomic weight have been noticed, and that they were overlooked in these cases was understandable in view of the size of the expected variations.

The Theory of the Equilibrium Constants of Exchange Reactions.

The differences in chemical properties of isotopic substances are mostly not exactly correlated in theoretical calculations with physical observations, but in the case of exchange reactions the observed phenomena are well correlated with the energy states of the molecules as secured from spectral data by the use of statistical mechanics. These correlations show the physical basis for the differences in these special cases, and throw light on the nature of other phenomena.

A typical exchange reaction may be written

$$
a \mathrm{~A}_{\mathbf{1}}+b \mathrm{~B}_{\mathbf{2}}=a \mathrm{~A}_{\mathbf{2}}+b \mathrm{~B}_{1}
$$

where A and B are molecules which have some one element as a common constituent and the subscripts 1 and 2 indicate that the molecule contains only the light or the heavy isotope respectively. (The case of molecules containing both isotopes simultaneously will be considered later.) Then the equilibrium constant for this reaction is given by

$$
\begin{equation*}
\left.K=\left(\frac{Q_{A_{A_{2}}}^{\prime}}{Q_{A_{1}}^{\prime}}\right)^{a} /\left(\frac{Q^{\prime}}{Q_{\mathrm{B}_{2}}^{\prime}}\right)^{Q_{\mathbf{B}_{1}}^{\prime}}\right)^{b} \tag{1}
\end{equation*}
$$

where the Q 's are the partition functions of the molecules. Only the ratios of partition functions enter into these equilibrium constants and this makes it necessary to consider only these simple ratios here. ${ }^{16}$ The ratio $Q^{\prime}{ }_{2} / Q_{1}^{\prime}$ for a chemical compound is given rigorously by the equation

$$
\begin{equation*}
\frac{Q_{2}^{\prime}}{Q_{1}^{\prime}}=\frac{\sigma_{1}}{\sigma_{2}}\left(\frac{M_{2}}{M_{1}}\right)^{3 / 2} \Sigma \mathrm{e}^{-E_{2} / \boldsymbol{k} T / \Sigma \mathrm{e}^{-E_{1} / \boldsymbol{k} T} .} \tag{2}
\end{equation*}
$$

where σ_{2}, and σ_{2} are the symmetry numbers of the two molecules (identical in the example given), M_{1} and M_{2} are their molecular weights, E_{1} and E_{2} are particular energy states of the molecules, and the summations are to be taken over all such energy states. These energies must be calculated relative to the hypothetical vibrationless state, i.e., with no zero point energy, or relative to the completely dissociated molecules. Since it is not possible to determine the energies of isotopic molecules relative to the dissociated states, and since the zero point energies cannot be directly observed, it is necessary to assume that the potential functions are the same for isotopic molecules, and estimate the zero point energies from the empirical but theoretically justified formulæ of molecular energy levels. If the temperature is so high that $\boldsymbol{k} T$ is large compared with the separations of the rotational energy levels, as it is in most of the cases we shall consider, and if the vibrational energy levels are sufficiently nearly harmonic, equation (2) can be replaced by

$$
\begin{equation*}
\frac{Q^{\prime}}{Q_{2}^{\prime}}=\frac{\sigma_{1}}{\sigma_{2}} \frac{I_{2}}{I_{1}}\left(\frac{M_{2}}{M_{1}}\right)^{3 / 2} \frac{\mathrm{e}^{-u_{2} / 2}}{1-\mathrm{e}^{-u_{2}}} \frac{1-\mathrm{e}^{-u_{1}}}{\mathrm{e}^{-u_{1} / 2}} \tag{3}
\end{equation*}
$$

for diatomic molecules and

$$
\begin{equation*}
\frac{Q^{\prime}{ }_{2}}{Q_{1}^{\prime}}=\frac{\sigma_{1}}{\sigma_{2}}\left(\frac{A_{2} B_{2} C_{2}}{A_{1} B_{1} C_{1}}\right)^{1 / 2}\left(\frac{M_{2}}{\bar{M}_{1}}\right)^{3 / 2} \Pi_{i} \frac{\mathrm{e}^{-u_{2 i} / 2}}{1-\mathrm{e}^{-u_{2 l}}} \frac{\mathrm{I}-\mathrm{e}^{-u_{1 i}}}{\mathrm{e}^{-u_{i 1} / 2}} \tag{4}
\end{equation*}
$$

for polyatomic molecules where the I^{\prime} s and A 's, B 's, and C^{\prime} 's are the moments of inertia of the diatomic molecules and the principle moments of inertia of the polyatomic molecules, respectively, and the u 's are related to the corresponding frequencies of vibration by relations of the kind, $u_{i}=\boldsymbol{h} \boldsymbol{\omega} \omega_{i} / \boldsymbol{k} T$, and the product extends over all frequencies of the polyatomic molecule. If the right and left sides of equations (3) and (4) are multiplied by $\left(m_{1} / m_{2}\right)^{3 / 2 n}$, where m_{1} and m_{2} are the atomic weights of the isotopic atoms being considered and n is the number of isotopic atoms being exchanged, and if the right sides of (3) and (4) are multiplied and divided by the ratios u_{1} / u_{2} and $\Pi_{i} u_{1 i} / u_{2 i}$ respectively, it is possible to simplify these expressions and define new partition functions which are in fact the equilibrium constants for exchange reactions between the compound considered and the separated atoms. Thus (3) and (4) became

$$
\frac{Q_{2}}{Q_{1}}=\frac{\sigma_{1}}{\sigma_{2}} \frac{u_{2}}{u_{1}} \frac{\mathrm{e}^{-u_{2} / 2}}{1-\mathrm{e}^{-u_{2}}} \frac{1-\mathrm{e}^{-u_{1}}}{\mathrm{e}^{-u_{1} / 2}}
$$

and

$$
\frac{Q_{2}}{Q_{1}}=\frac{\sigma_{1}}{\sigma_{2}} \Pi_{i} \frac{u_{2 i}}{u_{1 i}} \frac{\mathrm{e}^{-u_{2 i} / 2}}{1-\mathrm{e}^{-u_{2 i} i}} \frac{1-\mathrm{e}^{-u_{1 i}}}{\mathrm{e}^{-u_{i i} / 2}} .
$$

since

$$
\frac{I_{2}}{I_{1}}\left(\frac{M_{2}}{M_{1}}\right)^{3 / 2}\left(\frac{m_{1}}{m_{2}}\right)^{3 / 2 n} \frac{u_{1}}{u_{2}}=\left(\frac{A_{2} B_{2} C_{2}}{A_{1} B_{1} C_{1}}\right)^{1 / 2}\left(\frac{M_{2}}{M_{1}}\right)^{3 / 2}\left(\frac{m_{1}}{m_{2}}\right)^{3 / 2 n} \Pi_{i} \frac{u_{1 i}}{u_{2 i}}=1
$$

according to a theorem of Teller and Redlich. ${ }^{17}$ This makes it possible to calculate these ratios without calculating the moments of inertia and, in fact, from a knowledge of the frequencies only. Of course, it is necessary to secure the frequencies for isotopic molecules either by direct observation or by calculation in the case of rarer isotopes, and in this latter case much information is often needed in order to make the necessary calculations. It is obvious that the equilibrium constant K is given by

$$
\left(\frac{Q_{2 \mathrm{~A}}}{Q_{1 \mathrm{~A}}}\right)^{a} /\left(\frac{Q_{2 \mathrm{~B}}}{Q_{1 \mathrm{~A}}}\right)^{b}=K
$$

for the general exchange reaction just as it is given by (1).
The equations (3^{\prime}) and (4^{\prime}) can be put into more convenient form for purposes of calculation. Defining

$$
\begin{equation*}
x_{i}=\frac{u_{1 i}+u_{2 i}}{4} \text { and } \delta_{i}=\frac{u_{1 i}-u_{2 i}}{2} \tag{5}
\end{equation*}
$$

and expanding in terms of the δ_{i} 's, we get ${ }^{18}$

$$
\begin{equation*}
\ln \frac{Q_{2}}{Q_{1}}=\ln \frac{\sigma_{1}}{\sigma_{2}}+\Sigma_{i} \ln \frac{u_{2 i}}{u_{1 i}}+\Sigma_{i}\left[\operatorname{coth} x_{i} \delta_{i}+\frac{1}{12} \operatorname{coth} x_{i}\left(\operatorname{coth}^{2} x_{i}-1\right) \delta_{i}^{3}+---\right] \tag{6}
\end{equation*}
$$

This equation can be used without the term in $\delta_{i}{ }^{3}$ for all calculations reported in this paper except those of $\mathrm{LiH}, \mathrm{LiD}$; $\mathrm{NaH}, \mathrm{NaD} ; \mathrm{KH}, \mathrm{KD}$; and $\mathrm{H}_{2} \mathrm{O}, \mathrm{D}_{2} \mathrm{O}$.

If the u 's are small, i.e., either the frequencies low or the temperature high, the right sides of equations (3^{\prime}) and (4^{\prime}) can be easily expanded to give

$$
\begin{equation*}
\frac{Q_{2}}{Q_{1}}=\frac{\sigma_{1}}{\sigma_{2}}\left(1-\frac{1}{24}\left(u_{2}^{2}-u_{1}^{2}\right)\right) . \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{Q_{2}}{Q_{1}}=\frac{\sigma_{1}}{\sigma_{2}} \pi_{i}\left[1-\frac{1}{24}\left(u_{2 i^{2}}-u_{1 i}{ }^{2}\right)\right] . \tag{8}
\end{equation*}
$$

Since the u 's contain the inverse of the temperature, the ratio of the Q 's approaches the ratio of the symmetry numbers, and in this case no differences in chemical properties exist. The partition function ratio $Q^{\prime}{ }_{2} / Q^{\prime}{ }_{1}$ approaches the value $\frac{\sigma_{1}}{\sigma_{2}}\left(\frac{m_{2}}{m_{1}}\right)^{3 / 2 n}$ instead of $\frac{\sigma_{1}}{\sigma_{2}}$ in the case of Q_{2} / Q_{1}.

Bigeleisen and Mayer have shown how this formula can be used without solving the equations of motion, and have applied these methods to the silicon and tin fluorides and the fluorosilicate and fluorostannate ions.

For precise calculations it is necessary to include the anharmonic terms in the vibrational energy. When the frequencies are small these terms may be neglected and when they are large coth x_{i} is nearly equal to unity. In the case of diatomic molecules a correction for the anharmonicity terms can be made by substituting the true difference in zero point energies in calculating δ [equation (5)] instead of using harmonic terms only. In the case of polyatomic molecules this cannot be done since the anharmonic terms are not uniquely related to the ω_{i} 's, because of cross product terms. In this case a sufficiently good approximation can be made by adding to equation (6) a term $\Delta E^{\prime} / \boldsymbol{k} T$, where ΔE^{\prime} is the contribution to the zero point energy difference from the anharmonic energy terms. If the coefficients of the anharmonic terms are negative (the usual case) ΔE^{\prime} is negative and decreases the calculated value of Q_{2} / Q_{1}.

Equations (3) and (4), $\left(3^{\prime}\right)$ and (4^{\prime}) and (6) must be further corrected when the rotational partition functions have not reached classical values. Such corrections can be neglected at the temperatures which we consider here in all cases except those of the hydrogen exchange reactions. The formulæ for these corrections were first derived by Mulholland, ${ }^{19}$ Viney, ${ }^{20}$ and Gordon ${ }^{21}$ and are reviewed in detail by Kassel. ${ }^{22}$ The formulæ for these corrections are given for all cases by the last author.

If the molecule of a chemical compound under consideration contains only one atom of the element for which exchange is considered, then the symmetry numbers of the two isotopic molecules are the same and σ_{1} / σ_{2} is equal to unity. Also if a molecule contains more than one such atom but these atoms occupy indistinguishable positions in the molecule and if they are all exchanged in the reaction considered, the ratio of symmetry numbers is again unity. When these conditions are not met, the ratio of symmetry numbers is not unity and their values must be determined for each particular case.

In general, we are interested in the overall ratio of the isotopes of an element in one chemical compound as compared with a similar ratio in a second chemical compound. Thus the fractionation of the isotopes of oxygen between carbon dioxide and water is given by the ratio

$$
\begin{equation*}
\frac{2\left[\mathrm{CO}_{2}{ }^{18}\right]+\left[\mathrm{CO}^{16} \mathrm{O}^{18}\right]}{\left[\mathrm{CO}^{16} \mathrm{O}^{18}\right]+2\left[\mathrm{CO}_{2}{ }^{16}\right]} /\left[\frac{\mathrm{H}_{2} \mathrm{O}^{18}}{\left[\mathrm{H}_{2} \mathrm{O}^{16}\right]}\right]=\alpha . \tag{9}
\end{equation*}
$$

It can easily be shown that this reduces to

$$
\begin{equation*}
\frac{\left[\mathrm{CO}_{2}{ }^{18}\right]^{1 / 2}}{\left[\mathrm{CO}_{2}{ }^{16}\right]^{1 / 2}} /\left[\frac{\left[\mathrm{H}_{2} \mathrm{O}^{18}\right]}{\left[\mathrm{H}_{2} \mathrm{O}^{16}\right]}=\alpha\right. \tag{10}
\end{equation*}
$$

if the equilibrium constant for the reaction

$$
\mathrm{CO}_{2}{ }^{18}+\mathrm{CO}_{2}{ }^{16}=2 \mathrm{CO}^{16} \mathrm{O}^{18}
$$

is 4 , and this will be true providing the partition function for the molecule $\mathrm{CO}^{16} \mathrm{O}^{18}$ is the geometric mean of those for $\mathrm{CO}_{2}{ }^{16}$ and $\mathrm{CO}_{2}{ }^{18}$ divided by their symmetry numbers so that the equilibrium constant is $\sigma_{1} \sigma_{2} / \sigma_{12}{ }^{2}$, and since σ_{1} and σ_{2} are 2 and σ_{12} is 1 , this equals 4 . Similarly, the fractionation factor for the distribution of the oxygen isotopes between CO_{2} and $\mathrm{CO}_{2}=$ will be

$$
\frac{\left[\mathrm{CO}_{3}{ }^{18}=\right]^{1 / 3}}{\left[\mathrm{CO}_{3}{ }^{16=}\right]^{1 / 3}} / \frac{\left[\mathrm{CO}_{2}{ }^{18}\right]^{1 / 2}}{\left[\mathrm{CO}_{2}{ }^{16}\right]^{1 / 2}}
$$

if the proportion of the isotopic molecules is determined by the symmetry numbers alone. The generalisation of this rule is obvious, but it will not apply to molecules in which two or more
atoms of the same element do not occupy equivalent positions, as for example the case of nitrogen in the unsymmetrical molecule, $\mathrm{N}_{2} \mathrm{O}$. Also this rule does not apply in the case of the hydrogen isotopes where the isotopic effect on vibration frequencies is very large.

The justification of the rules given in the preceding paragraph is difficult unless one calculates the vibration frequencies of all the molecules involved, and this is a very laborious task which has not been extensively undertaken. In the case of the exchange between $\mathrm{CO}_{2}{ }^{16}, \mathrm{CO}_{2}{ }^{18}$, and $\mathrm{CO}^{16} \mathrm{O}^{18}$, the equilibrium constant has been calculated ${ }^{23}$ and found to be 3.9990 at 0°. α is decreased by $\left(1-\frac{\Delta}{8}\right)$ at low concentrations of the heavy isotope and increased by $\left(1+\frac{\Delta}{8}\right)$ at high concentrations of this isotope, where Δ is the difference between 4 and the actual constant. The equilibrium constants for the exchange between $\mathrm{O}_{2}{ }^{16}, \mathrm{O}_{2}{ }^{18}$, and $\mathrm{O}^{16} \mathrm{O}^{18}$ and $\mathrm{N}_{2}{ }^{14}, \mathrm{~N}_{2}{ }^{15}$, and $\mathrm{N}^{14} \mathrm{~N}^{15}$ are 3.9859 and 3.9918 respectively and the α 's for reactions involving $\mathrm{CO}_{2}, \mathrm{O}_{2}$, and N_{2} differ from those given by (6) by $1 \cdot 000125,1 \cdot 0018$, and $1 \cdot 0010$ respectively, all at 0° C. Errors of the same order of magnitude are probable in other cases. These are the largest deviations to be expected and are not important as compared to other probable errors. The special problem presented by the hydrogen isotopes will be considered again.

There is an electronic isotope effect for the H and D atoms of $30 \mathrm{~cm} .^{-1}$, and isotope effects of this order of magnitude should be present for all compounds of protium and deuterium. It is improbable that they will always cancel completely, and since they are unknown, there are uncertainties in the calculations of the Q_{2} / Q_{1} values for the protium and deuterium compounds. These uncertainties are greater in the case of the tritium compounds.

In the case of all polyatomic molecules except CO_{2} and HCN and all ionic molecules only the observed fundamentals are known. In these cases the errors may be larger than estimated above because of errors in the calculation of the zero point energy, since anharmonic terms are unknown and because of errors in calculating the fundamentals of the rare isotopic mosecules from the observed fundamentals of the more abundant isotopic molecules. If the anharmonic terms are negative (the usual case) the neglect of this factor makes the calculated Q_{2} / Q_{1} too small. In the case of CO_{2} and HCN , positive and negative anharmonic terms occur and the total effect on the calculated ratio is small. We have no way of estimating the magnitude or even the sign of these uncertainties.

If equilibrium constants for exchanges between gaseous substances and substances in condensed phases are desired, calculations for such constants are readily made from the equilibrium constants for gaseous substances and the appropriate relative vapour pressures if they are known. Since ionic substances are always in solution or in a solid phase, it is to be expected that calculated constants neglecting such effects may be in error by as much as a factor of 1.01 . Such differences must be due to the application of statistical mechanical formulæ applicable to ideal gaseous substances to condensed phases without considering the effects of interaction between internal vibrations of a molecule and the fields produced by the other molecules of the condensed phase.

In a number of cases equilibrium constants for exchange reactions change with temperature from a region in which K is greater than unity to one in which it is less than unity, or the reverse. This is not a general phenomenon but neither is it uncommon. By expanding $\ln u_{2 i} / u_{1 i}$ in equation (6) and neglecting the $\delta_{i}{ }^{3}$ terms, it is easy to show that in the region of large values for all u_{i} 's

$$
\ln K=\ln \left(\frac{f_{2 \mathrm{~A}}}{f_{1 \mathrm{~A}}}\right)^{a} /\left(\frac{f_{2 \mathrm{~B}}}{f_{1 \mathrm{~B}}}\right)^{b}=-a \Sigma \frac{\delta \omega_{i \mathrm{~A}}}{\omega_{i \mathrm{~A}}}+a \Sigma \delta_{i \mathrm{~A}}+b \Sigma \frac{\delta \omega_{i \mathrm{~B}}}{\omega_{i \mathrm{~B}}}-b \Sigma \delta_{i \mathrm{~B}}
$$

or if $K=1$ and we substitute the values of the δ_{i} 's in terms of the $\delta \omega_{i}$'s and solve for T, we get

$$
\begin{equation*}
T_{1}=\frac{a \Sigma \delta \omega_{2 \mathrm{~A}}-b \Sigma \delta \omega_{i \mathrm{~B}}}{a \Sigma\left(\frac{\delta \omega}{\omega}\right)_{i \mathrm{~A}}-b \Sigma\left(\frac{\delta \omega}{\omega}\right)_{i \mathrm{~B}}} \cdot \frac{\boldsymbol{h} \boldsymbol{c}}{2 \boldsymbol{k}} \tag{II}
\end{equation*}
$$

for the temperature at which K crosses the value unity as the temperature increases. Applying the equation to some of these exchange reactions, we get the results shown in Table I. These

Table 1.

calculations are only approximate, since they neglect anharmonic effects and disagree in some cases with the more exact calculations of the other tables. This crossing will occur if the difference in the sums of differences of frequencies has the same sign as the differences in the sums of the fractional differences of frequencies.

Numerical Results.

The vibration frequencies available for such calculations are very numerous but vary considerably in reliability for these purposes. Table II contains a list of the frequencies of diatomic and polyatomic molecules used for the calculations presented here. Unless the anharmonic terms in the vibrational energy level formulæ are known, exact equilibrium constants

Table II.
Molecular Frequencies.
(a) Diatomic molecules for which exact constants are known.

Molecule.	ω_{0}.	$-x_{\theta} \omega_{\theta}$.	Ref. (see p. 568).	Molecule.	ω_{θ}.	ω_{0}.	兂
HCl^{35}	2988.95	51.65	Herzberg, I, p. 488	NaH	$1170 \cdot 8$	18.90	Herzberg, I, p. 490
DCl^{35}	$2143 \cdot 52$	26.56	Calculated	NaD	$845 \cdot 3$	$9 \cdot 84$	Calculated
HCl^{37}	$2987 \cdot 5$	51.57	Calculated	KH	$983 \cdot 3$	14.40	Herzberg, I, p. 489
HBr^{79}	$2649 \cdot 67$	$45 \cdot 21$	Herzberg, I, p. 487	KD	$704 \cdot 2$	$7 \cdot 38$	Calculated
DBr^{79}	1885.95	22.90	Calculated	$\mathrm{C}^{12} \mathrm{O}^{16}$	$2167 \cdot 4$	13.28	Herzberg, I, p. 486
HBr^{81}	$2646 \cdot 6$	$45 \cdot 19$	Calculated	$\mathrm{C}^{13} \mathrm{O}^{16}$	$2119 \cdot 2$	$12 \cdot 69$	Calculated
HI	2309.53	39.73	Herzberg, I, p. 488	CO^{18}	$2115 \cdot 2$	12.65	Calculated
DI	$1639 \cdot 45$	$20 \cdot 02$	Calculated	$\mathrm{N}_{2}{ }^{14}$	$2359 \cdot 6$	14.45	Herzberg, I, p. 490
H_{2}	$4405 \cdot 3$	125.32	Herzberg, I, p. 487	$\mathrm{N}_{2}{ }^{15}$	$2279 \cdot 6$	13.48	Calculated
HD	$3817 \cdot 09$	94.02	Libby	$\mathrm{N}^{14} \mathrm{O}$	1906.54	14.50	Herzberg, I, p. 490
D_{2}	3118.8 \}	$64 \cdot 15$	Herzberg, I, p. 487	$\mathrm{N}^{15} \mathrm{O}$	1872.34	13.99	Calculated
	3117.07)	$62 \cdot 72$	Libby	$\mathrm{O}_{2}{ }^{16}$	$1580 \cdot 4$	12.07	Herzberg, I, p. 490
HT	3598.14	83.60	Libby	$\mathrm{O}_{2}{ }^{18}$	$1490 \cdot 0$	10.73	Calculated
DT	$2845 \cdot 64$	$52 \cdot 28$	Libby	$\mathrm{Cl}_{2}{ }^{35}$	$564 \cdot 9$	$4 \cdot 0$	Herzberg, I, p. 485
T_{2}	$2546 \cdot 50$	$41 \cdot 88$	Libby	$\mathrm{Cl}_{2}{ }^{37}$	$549 \cdot 4$	$3 \cdot 8$	Calculated
$\mathrm{Li}^{6} \mathrm{H}$	$1420 \cdot 32$	23.69	Calculated	$\mathrm{Br}_{2}{ }^{79}$	$323 \cdot 86$	1.07	Herzberg, I, p. 484
$\mathrm{Li}^{6} \mathrm{D}$	1074.59	13.72	Calculated	$\mathrm{Br}_{2}{ }^{81}$	319.84	1.04	Calculated
$\mathrm{Li}^{7} \mathrm{H}$	$1405 \cdot 65$	$23 \cdot 20$	Herzberg, I, p. 489	$\mathrm{I}_{2}{ }^{127}$	$214 \cdot 36$	0.59	Herzberg, I, p. 488
Li ${ }^{7} \mathrm{D}$	1055.12	13.23	Herzberg, I, p. 489	$\mathrm{I}_{2}{ }^{129}$	$212 \cdot 69$	$0 \cdot 58$	Calculated

(b) Diatomic molecules for which only the frequencies for the observed fundamentals ave known.

| $\mathrm{C}^{12} \mathrm{~N}^{14-}$ | 2080 | Estimated from Hibben, | $\mathrm{C}^{13} \mathrm{~N}^{14-}$ | 2036.47 | Calculated |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- |
| | | p. 453 | | | |

(c) Polyatomic molecules for which exact constants are known. The multiplicity of degenerate frequencies is indicated in parentheses.

Molecules.	ω_{1}.			Ref. (see p. 568).	Molecules.	ω_{i}.		${ }_{i j}$.	$\begin{gathered} \text { Ref. } \\ \text { (see p. } 568 \text {). } \end{gathered}$
$\mathrm{H}_{2} \mathrm{O}$	3825.32	-43.89	20.02	Herzberg,	$\mathrm{D}_{2} \mathrm{O}^{18}$	2744-2	-22.58	10.44	Calc., Val-
	1653.91	-19.5	-155.06	II, p. 282		$1202 \cdot 7$	-10.31	- 80.88	ence forces
	3935.59	-46.37	- 19.81			2861.7	-24.52	- 10.47	
HDO	$2820 \cdot 3$	$-42 \cdot 27$	-89.3	Libby	CO_{2}	1351-20	-0.3	+ $5 \cdot 7$	II,
	1449.4	$4 \cdot 1$	- 16.0			672.20(2)	-1.3	- 21.9	II, p. 276
	$3883 \cdot 8$	-77.39	- 25.53			2396.40	-12.5	$11 \cdot 0$	
D_{2}	2758.06	-22.81	- 10.56	Herzber	$\mathrm{C}^{13} \mathrm{O}_{2}$	$1351 \cdot 20$	- 0.30	+ 5.54	alc., Val-
	$1210 \cdot 25$	-10.44	- 81.92	II, p. 282		653•12(2)	-1.23	- 21.28	ence forces
	2883.79	-24.90	- 10.62			$2328 \cdot 40$	-11.80	10.38	
HTO	$2365 \cdot 0$	-29.43	- 18.93	Libby	CO_{2}	1273.92	-0.27	+ 5.29	Calc., Val-
	$1374 \cdot 5$	- $5 \cdot 91$	- 11.63			661.94(2)	-1.26	- 20.33	ence forces
	$3882 \cdot 6$	-77.70	- 26.95			2359.81	$-12 \cdot 12$	10.67	
DTO	$2357 \cdot 1$	-27.84	- 13.53	Libby	HCN	$2000 \cdot 6$	$+52.0$	4.2	erzberg,
	$1117 \cdot 9$	-13.7	- 9.01			729-3(2)	- $2 \cdot 85$	- 14.40	II, p. 280
	$2830 \cdot 7$	-41.77	- 11.3			$3451 \cdot 5$	-55.48	- 19.53	
$\mathrm{T}_{2} \mathrm{O}$	2296.63	-15.71	- 4.27	Libby	$\mathrm{HC}^{13} \mathrm{~N}$	1966.63	$+50 \cdot 25$	$4 \cdot 09$	Calc., Val-
	1017.89	-8.21	- 56.79			722.96(2)	- 2.80	- 14.09	ence forces
	2436-12	-18.39	- 6.21			3435-38	-54.96	- 19.27	
$\mathrm{H}_{2} \mathrm{O}^{18}$	$3815 \cdot 5$	$-43 \cdot 66$	- 19.89	Calc., val-	HCN ${ }^{15}$	1968.63	$+50.36$	- $4 \cdot 13$	Calc., Val-
	$1647 \cdot 8$	-19.36	-154.03	ence forces		728.22 (2)	-2.84	$-14 \cdot 17$	ence forces
	3919.4	-45.99	-19.66			$3450 \cdot 86$	-55.46	19.50	

The frequencies are listed in the order ω_{1}, ω_{2}, and ω_{3} and the $x_{i j}$'s in the order

x_{11}	x_{12}
x_{22}	x_{13}
x_{33}	x_{23}

Table II.-continued.
 Molecular Frequencies.

(d) Polyatomic molecules for which only frequencies for the observed fundamentals are known.

Molecule.

$\mathrm{Br}^{10} \mathrm{~F}_{3}$	888	719.5
$\mathrm{B}^{11} \mathrm{~F}_{3}$	888	$691 \cdot 3$
$\mathrm{B}^{10} \mathrm{Cl}_{3}$ (1.)	471	$471 \cdot 5$
$\mathrm{Br}^{11} \mathrm{Cl}_{3}$ (l.)	471	451
$\mathrm{Br}^{10} \mathrm{Cl}_{3}$ (g.)	471	483
$\mathrm{Br}^{11} \mathrm{Cl}_{3}$ (g.)	471	462
$\mathrm{Br}^{10} \mathrm{Br}_{3}(1$.	279	390
$\mathrm{Br}^{11} \mathrm{Br}_{3}$ (1.)	279	371.5
$\mathrm{CO}_{3}{ }^{-}$	1087	878
$\mathrm{C}^{13} \mathrm{O}_{3}=$	1087	$850 \cdot 56$
$\mathrm{CO}_{3}{ }^{\text {3 }}$ - $=$	$1024 \cdot 83$	$868 \cdot 19$
$\mathrm{NH}_{4}{ }^{+}$	3040	1725(2)
$\mathrm{N}^{15} \mathrm{H}_{4}{ }^{+}$	3040	1725(2)
NH_{3}	3337	950
$\mathrm{N}^{15} \mathrm{H}_{3}$	$3333 \cdot 9$	$945 \cdot 2$
$\mathrm{SO}_{4}{ }^{-}$	980	451.0(2)
$\mathrm{SO}_{4}{ }^{18}{ }^{-}$	924.0	425•2(2)
SO_{2}	1151	519
$\mathrm{SO}_{2}{ }^{18}$	1101.36	496.96
ClO_{2}	954	529
$\mathrm{ClO}_{2}{ }^{18}$	$925 \cdot 13$	$499 \cdot 16$
$\mathrm{Cl}^{37} \mathrm{O}_{2}$	$949 \cdot 29$	$524 \cdot 72$
$\mathrm{ClO}_{4}{ }^{-}$	935	462(2)
$\mathrm{Cl}^{37} \mathrm{O}_{4}-$	935	462(2)
$\mathrm{ClO}_{3}{ }^{-}$	932	615
$\mathrm{Cl}^{37} \mathrm{O}_{3}{ }^{-}$	$917 \cdot 80$	614.67
$\mathrm{Br}^{79} \mathrm{O}_{3}{ }^{-}$	805	420
$\mathrm{Br}^{81} \mathrm{O}_{3}-$	$802 \cdot 91$	$419 \cdot 12$
$\mathrm{I}^{127} \mathrm{O}_{3}{ }^{-}$	798	365
$\mathrm{I}^{129} \mathrm{O}_{3}{ }^{-}$	$797 \cdot 20$	364.58

$1497(2)$	$482(2)$
$1445 \cdot 9(2)$	$480 \cdot 4(2)$
$989(2)$	$253(2)$
$946(2)$	$253(2)$
$996(2)$	$243(2)$
$958(2)$	$243(2)$
$846(2)$	$151(2)$
$806(2)$	$151(2)$
$1437(2)$	$714(2)$
$1393 \cdot 89(2)$	$712 \cdot 81(2)$
$1415 \cdot 87(2)$	$673 \cdot 75(2)$
$3142(3)$	$1411(3)$
$3130 \cdot 3(3)$	$1405 \cdot 7(3)$
$3414(2)$	$1628(2)$
$3403 \cdot 9(2)$	$1625 \cdot 1(2)$
$1113 \cdot 6(3)$	$618 \cdot 9(3)$
$1081 \cdot 9(3)$	$589 \cdot 4(3)$
1361	-
$1317 \cdot 07$	-
1105	-
$1070 \cdot 18$	-
$1091 \cdot 73$	$628(3)$
$1102(3)$	$626 \cdot 42(3)$
$1085 \cdot 31(3)$	$480(2)$
$980(2)$	$479 \cdot 14(2)$
$971 \cdot 20(2)$	$358(2)$
$810(2)$	$357 \cdot 75(2)$
$808 \cdot 31(2)$	$323(2)$
$780(2)$	$322 \cdot 89(2)$
$779 \cdot 33(2)$	3

Ref. (see below).
Anderson, Lassettre, and Yost

Urey and Greiff
Calculated
Calculated, Hibben, p. 466
Calculated, Rosenthal Herzberg, II, p. 164
Calculated, Valence forces
Urey and Greiff
Urey and Greiff
Herzberg, II, p. 285
Calculated
Urey and Greiff
Calculated, Valence forces
Herzberg, II, p. 167
Calculated, Valence forces
Kujemzelis
Calculated, Valence forces
Kujemzelis
Calculated, Valence forces
Kujemzelis
Calculated, Valence forces
Herzberg, I; Herzberg, " Molecular Spectra and Molecular Structure," I, Diatomic Molecules, Prentice-Hall, Inc., New York, 1939.

Herzberg, II; Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules," D. van Nostrand Co., Inc., New York, 1945.

Urey and Greiff, loc. cit., ref. (12).
Libby, J. Chem. Physics, 1943, 11, 101. The ϵ_{1} and ϵ_{2} are omitted in the anharmonicities of the waters.

Hibben, " The Raman Effect and Chemical Applications," Reinhold Publishing Corp., New York, 1939.
Anderson, Lassettre, and Yost, J. Chem. Physics, 1936, 4, 703.
Rosenthal. Physical Rev., 1934, 45, 538.
Kujemzelis, Z. Physik, 1938, 109, 586.
Table III.
Ratios of Partition Functions for Hydrogen and Water Molecules.*
Temp. ${ }^{\circ}$ к.

Molecule pair.	$273 \cdot 1$	298.1	400.	500.	600.
$\mathrm{HD} / \mathrm{H}_{2}$	$7 \cdot 6282$	6.7366	$4 \cdot 7672$	$3 \cdot 8941$	$3 \cdot 4030$
$\mathrm{D}_{2} / \mathrm{HD}$	$2 \cdot 4017$	$2 \cdot 0704$	$1 \cdot 3715$	1.0752	$0 \cdot 9154$
$\left(\mathrm{D}_{2} / \mathrm{H}_{2}\right)^{\frac{1}{2}}$	$4 \cdot 2803$	3.7346	2.5570	$2 \cdot 0462$	1.7650
$\mathrm{HT} / \mathrm{H}_{2}$	$12 \cdot 496$	10.537	6.5542	4.9642	$4 \cdot 1258$
$\mathrm{T}_{2} / \mathrm{HT}^{2}$	$5 \cdot 1548$	$4 \cdot 1182$	$2 \cdot 2041$	$1 \cdot 5298$	1.2003
$\left(\mathrm{T}_{2} / \mathrm{H}_{2}\right)^{\frac{1}{2}}$	8.0260	6.5873	$3 \cdot 8008$	$2 \cdot 7558$	$2 \cdot 2254$
DT/D ${ }^{\text {d }}$	3.6482	$3 \cdot 4426$	$2 \cdot 9246$	$2 \cdot 6652$	$2 \cdot 5034$
$\mathrm{T}^{2} / \mathrm{DT}$	0.9617	$0 \cdot 9020$	$0 \cdot 7545$	$0 \cdot 6799$	$0 \cdot 6346$
$\left(\mathrm{T}^{2} / \mathrm{D}_{2}\right)^{\frac{1}{2}}$	1.8731	1.7622	1.4855	$1 \cdot 3462$	1.2605
$\mathrm{HDO} / \mathrm{H}_{2} \mathrm{O}$	$32 \cdot 7400$	24.9460	11.7240	7.5602	$5 \cdot 6614$
$\mathrm{D}_{2} \mathrm{O} / \mathrm{HDO}$	$8 \cdot 3185$	$6 \cdot 3065$	2.9282	$1 \cdot 8791$	1.4044
$\left(\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}\right)^{\frac{1}{2}}$	16.503	12.543	5.8592	3.7689	$2 \cdot 8196$
$\mathrm{HTO} / \mathrm{H}_{2} \mathrm{O}$	95.507	$65 \cdot 266$	$22 \cdot 681$	12.281	$8 \cdot 2027$
$\mathrm{T}_{2} \mathrm{O} / \mathrm{HTO}$	28.575	19.085	6.2523	$3 \cdot 2871$	$2 \cdot 1593$
$\left(\mathrm{T}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}\right)^{\frac{1}{2}}$	52-241	35.293	11.908	$6 \cdot 3535$	4.1603
DTO/D ${ }_{2}$	$5 \cdot 9628$	$5 \cdot 3294$	3.9068	3.2674	2.9088
$\mathrm{T}_{2} \mathrm{O} / \mathrm{DTO}$	$1 \cdot 6805$	1-4857	$1 \cdot 0573$	$0 \cdot 8696$	0.7658
$\left(\mathrm{T}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}\right)^{\frac{1}{2}}$	3•1656	$2 \cdot 8138$	$2 \cdot 0324$	1.6857	1.4925

[^0]Table IV.
Equilibrium Constants for Hydrogen and Water Exchange.
Temp., ${ }^{\circ} \mathrm{K}$.

0.	$273 \cdot 1$.	$298 \cdot 1$.	400.	500.	600.
0	3.18	3.25	3.48	3.62	3.72
0	3.94	3.96	4.00	4.02	4.03
∞	4.29	3.70	2.46	1.94	1.66
∞	3.46	3.05	2.14	1.75	1.53
0	2.42	2.56	2.97	3.24	3.44
0	3.34	3.42	3.63	3.74	3.80
∞	7.64	6.19	3.46	2.47	1.99
∞	5.54	4.63	2.84	2.15	1.80
0	3.79	3.82	3.88	3.92	3.94
0	3.55	3.59	3.70	3.76	3.80
∞	1.63	1.55	1.34	1.23	1.16
∞	1.75	1.65	1.40	1.28	1.21

Table V.
Hydrogen Exchange.

$\frac{Q_{2}}{Q_{1}}$	$\left(\frac{\mathrm{D}_{2} \mathrm{O}}{\mathrm{H}_{2} \mathrm{O}}\right)^{\frac{1}{2}} .$	$\frac{\mathrm{DCl}}{\mathrm{HCl}}$	$\frac{\mathrm{DBr}}{\mathrm{HBr}}$.	$\left(\bar{D}_{\mathrm{H}_{2}}\right)^{\frac{1}{3}}$.	$\frac{\mathrm{DI}}{\mathrm{HI}}$.	$\frac{\mathrm{LiD}}{\mathrm{LiH}} .$	$\frac{\mathrm{NaD}}{\mathrm{NaH}}$	$\frac{\mathrm{KD}}{\mathrm{KH}}$	$T{ }^{\circ} \mathrm{K}$.
	16.467	6.3726	$5 \cdot 1278$	$4 \cdot 2803$	$4 \cdot 0172$	1.8604	1.6908	1.5047	$273 \cdot 1$
	12.518	$5 \cdot 3059$	$4 \cdot 3454$	$3 \cdot 7346$	3.4744	1:7287	1.5819	$1 \cdot 4248$	$298 \cdot 1$
	$5 \cdot 8504$	$3 \cdot 1881$	$2 \cdot 7445$	$2 \cdot 5570$	$2 \cdot 3236$	$1 \cdot 4151$	1.3271	1.2377	400
	3.7648	$2 \cdot 3695$	$2 \cdot 1013$	2.0462	1.8434	$1 \cdot 2700$	1.2105	1.1524	500
	$2 \cdot 8222$	1.9493	1.7652	1.7650	1.5873	1-1891	1.1463	1-1055	600
$\left(\frac{\mathrm{D}_{2} \mathrm{O}}{\mathrm{H}_{2} \mathrm{O}}\right)^{\frac{1}{2}}$	1.000	∞	0						
		${ }^{2} \cdot 584$	$3 \cdot 211$	3.847	4.099	8.851	9.739	$10 \cdot 944$	$273 \cdot 1$
		$2 \cdot 359$	$2 \cdot 881$	3.352	3.603	7.241	7.913	8.786	$298 \cdot 1$
		1.835	2.132	$2 \cdot 288$	2.518	$4 \cdot 134$	$4 \cdot 408$	4.727	400
		1.589	1.792	$1 \cdot 840$	2.042	$2 \cdot 964$	3.110	3.267	500
		1.448	1.599	1-599	1.778	$2 \cdot 373$	$2 \cdot 462$	$2 \cdot 533$	600
		1.000	∞	∞	¢	∞	∞		0
DCl			1.243	$1 \cdot 489$	1.586	$3 \cdot 425$	3.769	$4 \cdot 235$	$273 \cdot 1$
$\overline{\mathrm{HCl}}$			1.221	$1 \cdot 421$	1.527	3.069	$3 \cdot 354$	3.724	$298 \cdot 1$
			1-162	$1 \cdot 247$	1-372	$2 \cdot 253$	$2 \cdot 403$	2.576	400
			$1 \cdot 128$	1-158	1.285	$1 \cdot 866$	$1 \cdot 957$	2.056	500
			1-104	1-104	1-228	1.639	1.701	1.763	600
$\frac{\mathrm{DBr}}{\mathrm{HBr}}$				∞	∞	∞	∞	∞	
			1.000	1.198	1-276	2.756	3.033	$3 \cdot 408$	$273 \cdot 1$
				$1 \cdot 164$	1-251	$2 \cdot 514$	$2 \cdot 747$	3.050	$298 \cdot 1$
				1.073	$1 \cdot 181$	1.939	2.068	$2 \cdot 217$	400
				1.027	$1 \cdot 140$	1.655	1.736	1.823	500
				1.000	1-112	$1 \cdot 484$	1.540	1.597	600
$\left(\frac{D_{2}}{\bar{H}_{2}}\right)^{\frac{1}{3}}$					0	∞	∞		0
				1.000	1.065	${ }_{2} \mathbf{2} 301$	${ }_{2}$. 532	${ }_{2} \mathbf{8} 845$	$273 \cdot 1$
					1.075	$2 \cdot 160$	$2 \cdot 361$	$2 \cdot 621$	$298 \cdot 1$
					$1 \cdot 100$	1.807	1.927	$\stackrel{2}{ } \cdot 066$	400
					1.110	1.611	$1 \cdot 690$	1.776	500
					1-112	$1 \cdot 484$	$1 \cdot 540$	1.597	600
						${ }_{2}{ }^{\text {a }}$	${ }_{2}{ }^{\circ}$	${ }^{\infty}$ ¢ 6	73
$\overline{\mathrm{HI}}$					1.000	$2 \cdot 159$	$2 \cdot 376$	$2 \cdot 670$	${ }_{298}^{273.1}$
						$2 \cdot 010$	${ }^{2} \cdot 196$	$\stackrel{2}{2} 439$	${ }_{400}^{298} 1$
						1.642	1751	1.877	400 500
						1.451	1.385	1.436	500 600
						1.335	1.385	$1 \cdot 436$	600
Lid						J.000	$\stackrel{\infty}{1} 100$	$\stackrel{\infty}{1.236}$	${ }_{0} \mathbf{0} 3 \cdot 1$
$\overline{\mathrm{LiH}}$							1.093	1.213	298.
							$1 \cdot 066$	1.143	400
							1.049	$1 \cdot 102$	500
							1.038	1.076	600
									0
$\stackrel{\mathrm{NaD}}{ }$							1.000	1.124	273•1
$\overline{\mathrm{NaH}}$								$1 \cdot 110$	$298 \cdot 1$
								1.072	400
								1.050	500
								I.038	600

cannot be calculated. For this reason such compounds as $\mathrm{H}_{2} \mathrm{CO}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}, \mathrm{H}_{2} \mathrm{O}_{2}$, and $\mathrm{C}_{2} \mathrm{H}_{2}$ have not been included although calculations of such constants have been reported in the literature.

In Table II the substances are classified into two groups, those for which the spectroscopic data are very reliable and detailed, and those for which only more approximate data are known. The equilibrium constants which depend on this second class of data are less reliable than those which depend on the first class only. Formulæ used for the calculations of frequencies of the rarer and unobserved isotopic molecule can be made by well-known methods for diatomic molecules, but a choice of formula must be made in the case of polyatomic molecules. Footnotes to the table indicate the type of formula used in these calculations.

In Tables III-XIII are recorded the values of the ratios of partition functions and equilibrium constants for exchange reactions involving the isotopes of $\mathrm{H}, \mathrm{Li}, \mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}, \mathrm{Br}$, and I. At the top under a symbol for the substance are given the values for Q_{2} / Q_{1}, at five temperatures, and then the equilibrium constants for all possible exchanges between these substances with respect to a particular isotope. A value in the body of the table is the

Table VI.
Lithium Exchange.

	$\mathrm{Li}^{7} \mathrm{D}$	$\mathrm{Li}^{7} \mathrm{H}$	Li^{7}	
	$\overline{\mathrm{Li}^{6} \mathrm{D}}{ }^{\text {b }}$	$\overline{\mathrm{Li}}{ }^{6} \mathrm{H}$	$\overline{L i^{6}}$.	$T{ }^{\circ}{ }^{\circ} \mathrm{K}$.
$\frac{Q_{2}}{\overline{Q_{1}}}$	1.0334	1.0281	1.0000	$273 \cdot 1$
	1.0292	1.0249	1.0000	$298 \cdot 1$
	1.0181	$1 \cdot 0161$	1.0000	400
	1.0123	1.0113	1.0000	500
	1-0089	$1 \cdot 0083$	$1 \cdot 0000$	600
	1.000	∞	∞	0
$\mathrm{Li}^{7} \mathrm{D}$		1.005	1.033	$273 \cdot 1$
$\overline{L i f^{6} \mathrm{D}}$		1.004	1.029	$298 \cdot 1$
		1.002	1.018	400
		1.001	1.012	500
		$1 \cdot 000_{5}$	1.009	600
			∞	0
$\mathrm{Li}^{7} \mathrm{H}$		$1 \cdot 000$	1.028	273•1
$\overline{\mathrm{Li}}{ }^{6} \mathrm{H}$			1.025	$298 \cdot 1$
			1.016	400
			1.011	500
			1.008	600

Table VII.
Boron Exchange.

	$\frac{\mathrm{B}^{11} \mathrm{~F}_{3}}{\overline{\mathrm{~B}}^{10} \mathrm{~F}_{3}} .$	$\frac{\mathrm{B}^{11} \mathrm{Cl}_{3}(\mathrm{l} .)}{\mathrm{B}^{10} \mathrm{Cl}_{3}(\mathrm{l} .)} .$	$\frac{\mathrm{B}^{11} \mathrm{Cl}_{3}(\mathrm{~g} .)}{\overline{\mathrm{B}}^{10} \mathrm{Cl}_{3}(\mathrm{~g} .)}$	$\frac{\mathrm{B}^{11} \mathrm{Br}_{3}(\mathrm{l} .)}{\overline{\mathrm{B}}^{10} \mathrm{Br}_{3}(1 .)}$	$T{ }^{\circ}{ }^{\circ} \mathrm{K}$.
	$1 \cdot 2727$	$1 \cdot 1739$	1-1567	1-1441	$273 \cdot 1$
$\frac{Q_{2}}{Q_{1}}$	$1 \cdot 2374$	1-1497	1-1350	1-1234	$298 \cdot 1$
	1-1471	1.0891	1.0805	1.0724	400
	1-1005	1.0591	1.0536	1.0477	500
	$1 \cdot 0728$	1.0420	1.0380	1.0336	600
$\frac{\mathrm{B}^{11} \mathrm{~F}_{3}}{\overline{\mathrm{~B}^{10} \mathrm{~F}_{3}}}$	1.000	$\stackrel{\infty}{1.084}$	$\stackrel{\infty}{1 \cdot 100}$	$\stackrel{\infty}{1} 112$	$\stackrel{0}{073 \cdot 1}$
		1.076	1.090	1-101	$298 \cdot 1$
		1.053	1.062	1.076	400
		1.039	1.044	1.050	500
		1.030	1.033	1.038	600
$\frac{\mathrm{B}^{11} \mathrm{Cl}_{3}(\mathrm{l} .)}{\mathrm{B}^{10} \mathrm{Cl}_{3}(\mathrm{l} .)}$		$1 \cdot 000$	$\stackrel{\infty}{1.015}$	${ }_{1} .026$	${ }_{0}^{0}$
			1.015	1.026	$273 \cdot 1$
			1.013	1.023	$298 \cdot 1$
			1.008	1.016	400
			1.005	1.011	500
			1.004	1.008	600
$\frac{\mathrm{B}^{11} \mathrm{Cl}_{3} \text { (g.) }}{\mathrm{B}^{10} \mathrm{Cl}_{3}(\mathrm{~g} .)}$			$1 \cdot 000$	0	0
				1.011	$273 \cdot 1$
				1.010	$298 \cdot 1$
				1.008	400
				$1 \cdot 006$	500
				1.004	600

	Table VIII. Carbon Exchange.						
	$\frac{\mathrm{C}^{13} \mathrm{O}_{3}=}{\mathrm{C}^{12} \mathrm{O}_{3}}=$	$\frac{\mathrm{C}^{13} \mathrm{O}_{2}}{\mathrm{C}^{12} \mathrm{O}_{2}}$	$\frac{\mathrm{C}^{13}}{\mathrm{C}^{12} \cdot} \cdot{ }^{*}$	$\frac{\mathrm{HC}^{13} \mathrm{~N}}{\mathrm{HC} \mathrm{C}^{12} \mathrm{~N}}$	$\frac{\mathrm{C}^{13} \mathrm{O}}{\mathrm{C}^{12} \mathrm{O}}$	$\frac{\mathrm{C}^{13} \mathrm{~N}^{-}}{\mathrm{C}^{12} \mathrm{~N}^{-}}$	$T{ }^{\circ}{ }^{\text {K }}$
$\frac{Q_{2}}{Q_{1}}$	1.2358	1.2169	1.2081	1.1358	1-1086	1.0980	$273 \cdot 1$
	1-2057	1.1909	1-1786	1-1206	1.0970	1.0875	$298 \cdot 1$
	1-1274	1.1233	1-1077	1.0802	1.0659	1.0589	400
	1.0870	1.0877	1.0722	1.0581	1.0479	${ }^{1} .0427$	500
	$1 \cdot 0629$	1.0656	$1 \cdot 0516$	1.0441	1.0360	1.0323	600
$\frac{\mathrm{Cl}^{13} \mathrm{O}_{3}=}{\mathrm{C}^{12} \mathrm{O}_{3}=}$	1.000	∞		∞	¢	∞	0
		1.016	1.023	1.088	1.115	1.126	$273 \cdot 1$
		1.012	1.023	1.076	1.099	$1 \cdot 109$	298.1
		1.004	1.018	1.045	1.058	1.066	400
		$0 \cdot 999_{4}$	1.014	1.027	1.037	1.042	500
		0.997_{5}	1.011	1.018	1.026	1.030	600
$\frac{\mathrm{C}^{13} \mathrm{O}_{2}}{\mathrm{C}^{12} \mathrm{O}_{2}}$		1.000	0	∞	${ }^{\infty}$	∞	
			1.007	1.071	1.098	1-108	$273 \cdot 1$
			1.010	1.063	1.086	1.095	298.1
			1.014	1.040	1.055	1.061	400
			1.014	1.028	1.038	1.043	500
			$1 \cdot 013$	1.021	$1 \cdot 029$	1.032	600
			1.000	∞	∞	∞	0
Cl^{13}				1.064	1.090	1.100	$273 \cdot 1$
$\overline{\mathbf{C l}^{12}}$				1.052	1.074	1.084	298.1
				1.025	1.039	1.046	400
				1.013	1.023	1.028	500
				1.007	1.015	1.017	600
						∞	0
$\frac{\mathrm{HC}^{13} \mathrm{~N}}{\overline{\mathrm{HC}}{ }^{12} \mathrm{~N}}$				1.000	1.025	1.034	$273 \cdot 1$
					1.022	1.030	298.1
					1.013	1.020	400
					, 1.010	1.015	500
					${ }^{1} 1.008$	1.011	600
$\frac{\mathrm{C}^{13} \mathrm{O}}{\mathrm{C}^{12} \mathrm{O}}$					1.000	${ }^{\infty} .010$	273.1
					1.00	1.009	${ }_{298.1}^{273.1}$
						1.007	400
						1.005	500
						1.004	600

* The partition function recorded here is for diamond. The Debye θ 's have been taken as 1860 and 1787 for C^{12} and C^{13} respectively. The partition functions have been calculated using the equations given by Mayer and Mayer, "Statistical Mechanics," John Wiley and Sons, New York, 1940.
equilibrium constant at the temperature shown in the far right column between the molecules listed at the top of the column and at the left. If these constants are greater than unity the heavier isotope will concentrate preferentially in the compound listed at the left. The blank part of the table could be filled with the reciprocals of the numbers listed.

In the case of the hydrogen exchange reactions as listed in Table V, the constants recorded are only approximate when $\mathrm{H}_{2}, \mathrm{D}_{2}, \mathrm{~T}_{2}$, and $\mathrm{H}_{2} \mathrm{O}, \mathrm{D}_{2} \mathrm{O}$, and $\mathrm{T}_{2} \mathrm{O}$ are involved, since the equilibrium constants involving the mixed molecules are not approximately equal to 4 . It is necessary to calculate the partition functions for the mixed molecules. The ratios of these partition functions and equilibrium constants are listed in Tables III and IV. The symbol Q_{12} refers to the mixed molecules, and the values of Q_{1} and Q_{2} for the homogeneous molecules are the squares of those listed in the main tables.

The constants listed in Table IV in which either $\mathrm{H}_{2}, \mathrm{D}_{2}$ or $\mathrm{H}_{2} \mathrm{O}, \mathrm{D}_{2} \mathrm{O}$ are involved will give the exact ratio of isotopes when the concentrations of H_{2} and D_{2} in the hydrogen gas are equal or when the concentrations of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$ are equal in the water vapour.

The equilibrium constants listed in Table VI for lithium are few in number and do not deviate from unity as much as one might expect for this light element. The maximum deviation from unity in the case of boron is 0.112 whereas for lithium this is 0.033 . It seems probable that considerable fractionation would occur between the very stable compounds of lithium such as the oxide and fluoride and, say, the metal vapour, but these compounds do not lend themselves either to spectroscopic investigations or to experimental exchange reaction studies.

The boron exchanges are limited to the boron halides. Of particular interest is the predicted difference in vapour pressures of the isotopic boron chlorides. In other cases in which Raman

Table IX.
Nitrogen Exchange.

$\frac{Q_{2}}{Q_{1}}$	$\frac{\mathrm{N}^{15} \mathrm{H}_{4}{ }^{+}}{\mathrm{N}^{14} \mathrm{H}_{4}{ }^{+}} .$	$\left(\frac{\mathrm{N}_{2}{ }^{15}}{\mathrm{~N}_{2}^{14}}\right)^{\frac{1}{2}} .$	$\frac{\mathrm{N}^{15} \mathrm{H}_{3}}{\mathrm{~N}^{14} \mathrm{H}_{3}} .$	$\frac{\mathrm{N}^{15} \mathrm{O}}{\mathrm{~N}^{14} \mathrm{O}}$	$\frac{\mathrm{HCN}^{15}}{\mathrm{HCN}^{14}} .$	$\frac{\mathrm{CN}^{-15}}{\mathrm{CN}^{-14}} .$	$T,{ }^{\circ} \mathrm{K}$.
	$1 \cdot 1184$	1.0908	1.0768	$1.073{ }_{8}$	1.0736	1.0718	$273 \cdot 1$
	$1 \cdot 1059$	1.0814	1.0688	1.0659	1.0655	1.0641	$298 \cdot 1$
	1.0721	1.0558	1.0472	$1.044{ }_{0}$	1.0439	1.0433	400
	$1 \cdot 0530$	1.0410	1.0350	1.031 .	1.0316	1.0315	500
	$1 \cdot 0409$	1.0311	$1 \cdot 0271$	1.0238	1.0238	$1 \cdot 0239$	600
	1.000	∞	∞	∞	∞	∞	0
$\mathrm{N}^{15} \mathrm{H}_{4}{ }^{+}$		1.025	1.039	1.042	1.042	1.043	$273 \cdot 1$
$\overline{\mathrm{N}^{14} \mathrm{H}_{4}{ }^{\top}}$		1.023	1.035	1.038	1.038	1.039	$298 \cdot 1$
		1.015	1.024	1.027	1.027	1.028	400
		1.012	1.017	1.021	1.021	1.021	500
		1.010	1.013	1.017	1.017	1.017	600
$\left(\frac{\mathbf{N}_{2}{ }^{15}}{\mathbf{N}_{2}{ }^{14}}\right)^{\frac{1}{2}}$		1.000	$\stackrel{\infty}{1.013}$	$\stackrel{\infty}{1.016}$	$\stackrel{\infty}{1.016}$	c 1.018	0 $273 \cdot 1$
			1.012	1.015	1.015	1.016	298.1
			1.008	1.011	1.011	1.012	400
			1.006	1.009	1.009	1.009	500
			1.004	1.007	$1 \cdot 007$	1.007	600
$\frac{\mathrm{N}^{15} \mathrm{H}_{3}}{\mathrm{~N}^{14} \mathrm{H}_{3}}$			1.000	${ }_{1}^{\infty} \cdot 003$	$\stackrel{\infty}{1.003}$	$\stackrel{\infty}{1.005}$	0
				1.003	1.003	1.005	$273 \cdot 1$
				1.003	1.003 1.003	1.004	$298 \cdot 1$
				1.003 1.003	1.003 1.003	1.004 1.003	400 500
				1.003 1.003	1.003 1.003	1.003 1.003	500 600
$\frac{\mathrm{N}^{15} \mathrm{O}}{\mathrm{~N}^{14} \mathrm{O}}$				1.000	∞	∞	0
					$1 \cdot 000{ }_{2}$	1.002	$273 \cdot 1$
					$1 \cdot 000{ }_{4}$	1.002	$298 \cdot 1$
					$1 \cdot 000{ }_{1}$	1.001	400
					$1 \cdot 000{ }^{\circ}$	1.000	500
					$1 \cdot 000{ }_{0}$	1.000	600
						∞	0
HCN ${ }^{15}$					1.000	1.002	273-1
$\overline{\mathrm{HCN}^{14}}$						1.001	$298 \cdot 1$
						1.001	400
						1.000	500
						1.000	600

frequencies for the liquid and gaseous states have been observed as well as in this, the frequencies are usually lower for the liquid state and this should result in a preferential concentration of the heavier isotope in the gas phase. This is not true in this case because of the larger observed isotopic shift of the ω_{3} frequency in the liquid as compared with the gas. If this is in error for some reason not evident from the paper by Anderson, Lassettre, and Yost, the predicted difference in vapour pressures will be incorrect, and in fact may be so because of the application of gaseous partition functions to the liquid state.

The equilibrium constants for chlorine exchange reactions are surprisingly large. This is due to the increased number of vibrational degrees of freedom as the number of oxygen atoms combined with the chlorine atom increases, and the approximate constancy of the vibrational frequencies of all the oxygen compounds of chlorine. Similar effects should occur in the case of the sulphur isotopes, and in fact the experimental values for their fractionation between sulphur dioxide and bisulphite ion are close to the corresponding value for the chlorine isotopes.*

The tables for chlorine, bromine, and iodine show the trend of these equilibrium constants with atomic weight for constant difference of atomic weight. The exchange constants for $\mathrm{ClO}_{3}{ }^{-}$, $\mathrm{BrO}_{3}{ }^{-}$, and IO_{3}^{-}and their corresponding elements at $298 \cdot 1^{\circ}$ are $1.040,1.007$, and 1.003 , respectively. It is evident that these chemical differences decrease rapidly with atomic weight though there is considerable irregularity in many cases, as for example in the calculated values for lithium and those for chlorine. The iodine example using ${ }^{129}$ has been included for the purpose of comparison.

The values of the equilibrium constants at $0^{\circ} \mathrm{K}$. are either 0 or ∞ and depend on the zero point energies only. When the equilibrium constants are nearly unity at higher temperatures

* That such large fractionation factors should exist was first called to my attention by Dr. Duane Vier, who made the calculation for the chlorine dioxide-chlorine exchange.

Table X.
Oxygen Exchange.

	$\left(\frac{\mathrm{CO}_{2}{ }^{18}}{\mathrm{CO}_{2}{ }^{16}}\right)^{\frac{1}{2}} .$	$\mathrm{CO}^{18} \mathrm{CO}^{16}$.	$\left(\frac{\mathrm{CO}_{3}{ }^{18=}}{\mathrm{CO}_{3}{ }^{16}=}\right)^{\frac{1}{3}} .$	$\left(\frac{\mathrm{SO}_{4}{ }^{18}=}{\mathrm{SO}_{4}{ }^{16}=}\right)^{\frac{1}{4}}$	$\left(\frac{\mathrm{SO}_{2}{ }^{18}}{\mathrm{SO}_{2}{ }^{18}}\right)^{\frac{1}{2}}$	$\cdot \frac{\mathrm{D}_{2} \mathrm{O}^{18}}{\mathrm{D}_{2} \mathrm{O}^{16}}$	$\left(\frac{\mathrm{O}_{2}{ }^{18}}{\mathrm{O}_{2}^{18}}\right)^{\frac{1}{2}}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}^{18} \\ & \mathrm{H}_{2} \mathrm{O}^{16} \end{aligned}$	$\binom{\mathrm{ClO}_{2}^{18}}{\mathrm{ClO}^{16}}^{\frac{1}{2}} .$	T, ${ }^{\circ} \mathrm{K}$.
$\frac{Q_{2}}{Q_{1}}$	1.1331	$1 \cdot 1181$	$1 \cdot 1090$	1-1073	1-1017	1.0974	1.0923	1.0741	1.0717	$273 \cdot 1$
	$1 \cdot 1172$	1-1053	1.0945	1.0924	1.0888	1.0872	1.0818	1.0667	1.0621	$298 \cdot 1$
	$1 \cdot 0750$	1.0714	1.0576	$1 \cdot 0557$	1.0551	1.0594	1.0533	1.0465	1.0375	400
	$1 \cdot 0525$	1.0518	1.0388	1.0370	1.0376	1.0437	1.0374	1.0350	1.0251	500
	1.0387	1 20390	1.0279	$1 \cdot 0261$	1.0271	1.0336	$1 \cdot 0274$	1.0275	1.0179	600
$\left(\frac{\mathrm{CO}_{2}{ }^{18}}{\mathrm{CO}_{2}^{16}}\right)^{\frac{1}{2}}$		∞	∞	0	∞	∞	∞	∞	∞	0
	1.000	1.013	1.022	1.023	1.029	1.033	1.037	1.055	1.057	$273 \cdot 1$
		1.011	1.021	1.023	1.026	1.028	1.033	1.047	1.052	$298 \cdot 1$
		1.003	1.016	1.018	1.020	1.015	1.021	1.027	1.036	400
		$1 \cdot 000{ }_{7}$	1.013	1.015	1.014	1.008	1.016	1.017	1.027	500
		0.9997	1.011	1.012	1.011	1.005	1.011	1.011	$1 \cdot 020$	600
$\frac{\mathrm{CO}^{18}}{\mathrm{CO}^{18}}$			0	0	0	∞	∞	∞	∞	0
		$1 \cdot 000$	1.008	1.010	1.015	1.019	1.024	1.041	1.043	$273 \cdot 1$
			1.010	1.012	1.015	1.017	1.022	1.036	1.041	298.1
			1.013	1.015	1.015	1.011	1.017	1.024	1.033	400
			1.014	1.014	1.014	1.008	1.014	1.016	1.026	500
			1.011	1.013	1.012	1.005	1.011	1.011	$1 \cdot 021$	600
$\left(\frac{\mathrm{CO}_{3}{ }^{18=}}{\mathrm{CO}_{3}{ }^{16=}}\right)^{\frac{7}{3}}$			$1 \cdot 000$	0	∞	∞	∞	∞	∞	0
				1.002	1.007	1.011	1.015	1.033	1.035	$273 \cdot 1$
				1.002	1.005	1.007	1.012	1.026	1.031	298.1
				1.002	1.002	0.998	1.004	1.011	1.019	400
				1.002	1.001	0.995	1.001	1.004	1.013	500
				1.002	1.001	0.994	1.000	$1 \cdot 0004$	$1 \cdot 010$	600
$\left(\frac{\mathrm{SO}_{4}{ }^{18=}}{\mathrm{SO}_{4}^{16=}}\right)^{\frac{1}{2}}$				$1 \cdot 000$	$\xrightarrow{\infty} 1.005$	¢ 1.009	¢ 1.014	c 1.031	$\stackrel{\infty}{1.033}$	0 $273 \cdot 1$
				1000	1.005 1.003	1.005	1.014	1.024	1.029	298.1
					1.001	0.997	1.002	1.009	1.018	400
					0.999	0.994	0.999_{6}	1.003	1.012	500
					0.999	0.993	0.999	0.999	1.008	600
$\left(\frac{\mathrm{SO}_{2}{ }^{18}}{\mathrm{SO}_{2}{ }^{16}}\right)^{\frac{1}{2}}$						∞	∞	∞	∞	0
					1.000	1.004	1.007	1.026	1.028	$273 \cdot 1$
						1.001	1.006	1.021	1.025	298.1
						0.996	1.003	1.008	1.017	400
						0.994	1.000	1.003	1.012	500
						0.994	0.999_{7}	0.999_{6}	1.009	600
$\frac{\mathrm{D}_{2} \mathrm{O}^{18}}{\mathrm{D}_{2} \mathrm{O}^{16}}$							0	∞	∞	0
						1.000	1.005	1.022	1.024	$273 \cdot 1$
							1.005	1.019	1.024	$298 \cdot 1$
							1.006	1.013	$1 \cdot 021$	400
							1.006	1.008	1.018	500
							1.006	1.006	1.015	600
$\left(\frac{\mathrm{O}_{2}^{18}}{\mathrm{O}_{2}^{16}}\right)^{\frac{1}{2}}$							1.000	∞	∞	0
								1.017	1.019	273 1
								1.014	1.019	$298 \cdot 1$
								1.006	1.015	400
								1.002	1.012	500
								0.999,	1.009	600
									0	0
$\mathrm{H}_{2} \mathrm{O}^{18}$								1.000	1.002	$273 \cdot 1$
$\overline{\mathrm{H}_{2} \mathrm{O}^{16}}$									1.004	$298 \cdot 1$
									$1 \cdot 009$	400
									1.010	500
									1.009	600

these values for $0^{\circ} \mathrm{K}$. may easily be in error since a small error in estimating the zero point energy could change these from 0 to ∞ or the reverse.

Experimental Confirmation of the Calculations.

Of the many equilibrium constants calculated, only a few have been checked by experiment. Most of these cannot be confirmed because no method of establishing equilibrium is possible owing to the slowness with which equilibrium is established or because chemical reactions occur between the chemical compounds involved. The equilibrium between $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI was compared by Urey and Rittenberg ${ }^{24}$ with that between $\mathrm{D}_{2}, \mathrm{I}_{2}$, and DI and the ratio of

Table XI.
Chlorine Exchange.
$\frac{Q_{2}}{Q_{1}}$
$\frac{\mathrm{Cl}^{37} \mathrm{O}_{4}^{-}}{\mathrm{Cl}^{35} \mathrm{O}_{4}^{-}} \quad 1 \cdot 000$

$\mathrm{Cl}^{37} \mathrm{O}_{4}{ }^{-}$	$\mathrm{Cl}^{37} \mathrm{O}_{3}-$
$\mathrm{Cl}^{35} \mathrm{O}_{4}{ }^{-}$-	$\mathrm{Cl}^{35} \mathrm{O}_{3}{ }^{\text {a }}$.
1.0972	1.0551
1.0847	$1 \cdot 0478$
1.0521	1-0291
1.0353	1.0196
1.0253	1.0140
	∞
1.000	1.040
	1.035
	1.022
	1.015
	1.011
	1.000

$\mathrm{Cl}^{137} \mathrm{O}_{2}$	$\left(\mathrm{Cl}_{2}{ }^{37}{ }^{\frac{1}{2}}\right.$
$\mathrm{Cl}^{355}{ }_{2}$.	$\left(\frac{C_{2}{ }^{35}}{}\right.$.
1.0360	1.0086
1.0313	1.0074
1.0185	1.0043
1.0130	1.0028
1.0094	1.0019
∞	-
1.059	1.088
1.052	1.077
1.033	1.048
1.022	1.032
1.016	1.023
∞	
1.018	1.046
1.016	1.040
1.010	1.025
1.007	1.017
1.005	1.012
1.000	${ }^{\infty}$
	1.027
	1.024
	1.014
	1.010
	$1 \cdot 007$
	1.000

HCl^{37}	
$\overline{\mathrm{HCl}}^{35}$.	$T{ }^{\circ} \mathrm{K}$.
1.0050	$273 \cdot 1$
1.0046	298.1
1.0032	400
1.0024	500
1.0019	600
∞	0
1.092	273 -1
1.080	298.1
1.049	400
1.033	500
1.023	600
∞	0
1.050	$273 \cdot 1$
1.043	298.1
1.026	400
1.017	500
1.012	600
∞	0
1.031	$273 \cdot 1$
1.027	298.1
1.015	400
1.010	500
1.007	600
	0
1.004	$273 \cdot 1$
1.003	298.1
1.001	400
$1.000{ }_{4}$	500
1.000_{0}	600

Table XII.
Bromine Exchange.

$\stackrel{\mathrm{Br}^{81} \mathrm{O}_{3}-}{\mathrm{Br}^{79} \mathrm{O}_{3}{ }^{-}}$	$\left(\frac{\mathrm{Br}_{2}{ }^{81}}{\mathrm{Br}_{2} \mathrm{~m}^{79}}\right)^{\frac{1}{2}}$.	$\frac{\mathrm{HBr}^{81}}{\mathrm{HBr}^{79}}$.	$T,{ }^{\circ} \mathrm{K}$.
1.0093	1.0014	1.0009	$273 \cdot 1$
1-0080	1.0012	1.0008	298.1
1.0048	1.0007	1.0006	400
1.0032	1.0004	1.0004	500
1.0022	1.0003	$1 \cdot 0003$	600
1.000	∞	∞	0
	1.008	1.008	$273 \cdot 1$
	1.007	1.007	$298 \cdot 1$
	1.004	1.003	400
	1.003	1.003	500
	1.002	1.002	600
	1.000	∞	0
		1.000_{5}	273.1
		$1.000{ }_{4}$	298.1
		$1.000{ }_{1}$	400
		${ }_{1}^{1.0000}$	500 600

Table XIII.
Iodine Exchange.
$\frac{Q_{3}}{Q_{1}}$
$\frac{\mathrm{I}^{188} \mathrm{O}_{3}-}{\bar{I}^{127} \mathrm{O}_{3}-}$
$\frac{\mathrm{I}^{129} \mathrm{O}_{3}^{-}}{\mathrm{I}^{127 \mathrm{O}_{3}}{ }^{-} .}$
1.0031
1.0000
$\left(\frac{\mathrm{I}_{2}{ }^{129}}{\mathrm{I}_{2}{ }^{127}}\right)^{\frac{1}{2}}$. 1.0003
1.002_{8}
$T,{ }^{\circ}{ }^{\text {к. }}$ $298 \cdot 1$

0 298.1
equilibrium constants agreed with those calculated for the exchange reaction. Several authors ${ }^{25}$ have investigated the equilibrium between $\mathrm{H}_{2}, \mathrm{HD}, \mathrm{H}_{2} \mathrm{O}$, and HDO and given several values which are in rough agreement with the calculated results. Libby ${ }^{26}$ has calculated the equilibrium constants for the hydrogen-water exchanges with respect to protium, deuterium, and tritium, and he and Taylor and Black have checked these calculations for the protiumtritium exchange with excellent agreement. The equilibrium constants given here differ slightly from Libby's owing to the inclusion of rotational corrections in some cases and to small errors made by Libby (see corrections in forthcoming issue of the J. Chem. Physics). The present calculations still do not include the rotational corrections for the water molecules and they also neglect small corrections for the anharmonicities. They agree better with experiment than do Libby's. Calculations were made by using anharmonic terms calculated by the Dennison and Darling rule and slightly better agreement with experiment was secured. Since there is a consistent difference between calculated and the experimental values, there is probably a systematic error present. On the theoretical side, this may be due to errors in the anharmonic terms or to electronic isotope effects, though both of these should lead to a constant percentage error with temperature and not a constant difference which appears to be the case. Since the equilibrium constants for the hydrogen exchange reactions must include all corrections discussed in this paper, exact calculations cannot be made without a full knowledge of the structure of the molecules, and for this reason exact agreement between calculated and observed values cannot be expected for many feasible reactions.

These reactions, as well as others that have been studied, are listed in Table XIV. All the reactions involving other isotopes than those of hydrogen are two-phase reactions and, except for the first for which the relative vapour pressures are known, exact agreement cannot be expected. Reasonably satisfactory agreement is secured, and in the case of those reactions for which spectroscopic data are lacking, fractionation of the isotopes of the correct order of magnitude is observed. Some of the observed values are derived from isotope separation

Table XIV.

Reaction.	T, ${ }^{\circ} \mathrm{K}$.	α (exp.).	a (calc.).	Ref.
${ }_{2}^{1} \mathrm{CO}_{2}{ }^{16}+\mathrm{H}_{2} \mathrm{O}^{18}$ (liq.) $=\frac{1}{2} \mathrm{CO}_{2}{ }^{18}+\mathrm{H}_{2} \mathrm{O}^{16}$ (liq.)	273.1	1.046	1.044	(1)
$\mathrm{N}^{15} \mathrm{H}_{3}+\mathrm{N}^{14} \mathrm{H}_{4}^{+}=\mathrm{N}^{14} \mathrm{H}_{3}{ }^{+} \mathrm{N}^{15} \mathrm{H}_{4}{ }^{+}{ }^{\text {a }} \ldots \ldots \ldots$.	$298 \cdot 1$	1.034 ± 0.002	1.035	(2)
$\mathrm{N}^{15} \mathrm{H}_{3}+\mathrm{N}^{14} \mathrm{H}_{3}$ (aq.) $=\mathrm{N}^{14} \mathrm{H}_{3}+\mathrm{N}^{15} \mathrm{H}_{3}$ (aq.)	298.1	1.006 ± 0.002	-	(2)
$\mathrm{HC}^{12} \mathrm{~N}^{3}+\mathrm{C}^{13} \mathrm{~N}^{-1}=\mathrm{HC}^{13} \mathrm{~N}+\mathrm{C}^{12} \mathrm{~N}^{-} \ldots \ldots \ldots \ldots$.	295*	Near 1.026	1.030	(3)
$\mathrm{HCN}^{14}+\mathrm{CN}^{15-}=\mathrm{HCN}^{15}+\mathrm{CN}^{14-}$	$295 *$	Slightly <1	1.002	(4)
$\mathrm{C}^{12} \mathrm{O}_{3}=+\mathrm{C}^{13} \mathrm{O}_{2}=\mathrm{C}^{13} \mathrm{O}_{3}=+\mathrm{C}^{12} \mathrm{O}_{2}$	273-1?	1.017	1.016	(5)
$\frac{1}{3} \mathrm{CO}_{3}{ }^{16}=\mathrm{H}_{2} \mathrm{O}^{18}=\frac{1}{3} \mathrm{CO}_{3}{ }^{18}=+\mathrm{H}_{2} \mathrm{O}^{16}$	273.1?	1.036	1.033	(6)
$\mathrm{HC}^{12} \mathrm{O}_{3}-+\mathrm{C}^{13} \mathrm{O}_{2}=\mathrm{HC}^{13} \mathrm{O}_{3}-+\mathrm{C}^{12} \mathrm{O}_{2}$	298*	>1.014	-	(7)
$\mathrm{S}^{34} \mathrm{O}_{2}+\mathrm{HS}^{32} \mathrm{O}_{3}{ }^{-}=\mathrm{S}^{32} \mathrm{O}_{2}+\mathrm{HS}^{34} \mathrm{O}_{3}{ }^{-2}$	$298 \cdot 1$	1.019 ± 0.002	-	(2)
$\mathrm{S}^{36} \mathrm{O}_{2}+\mathrm{HS}^{32} \mathrm{O}_{3}^{-}=\mathrm{S}^{32} \mathrm{O}_{2}+\mathrm{HS}^{36} \mathrm{O}_{3}{ }^{-}$	$298 \cdot 1$	$1 \cdot 043 \pm 0.004$	-	(2)
$\mathrm{Li}^{7} \mathrm{Z}^{2}+\mathrm{Li}^{6+}=\mathrm{Li}^{6} \mathrm{Z}+\mathrm{Li}^{\mathbf{7}+}{ }^{+}$(...	$295 *$	1.022	-	(8)
Li^{7} (amal.) $+\mathrm{Li}^{6} \mathrm{Cl}=\mathrm{Li}^{6}$ (amal.) $+\mathrm{Li}^{7} \mathrm{Cl}$	295 *	1.025	-	(9)
$\mathrm{HD}+\mathrm{H}_{2} \mathrm{O}=\mathrm{HDO}+\mathrm{H}_{2}$	293	$3 \cdot 2$	$3 \cdot 81$	(10)
$\mathrm{HD}+\mathrm{H}_{2} \mathrm{O}=\mathrm{HDO}+\mathrm{H}_{2}$	800	$1 \cdot 28$	1.36	(11)
$\mathrm{HT}+\mathrm{H}_{2} \mathrm{O}=\mathrm{HTO}+\mathrm{H}_{2}$	$273 \cdot 1$	$7 \cdot 74$	$7 \cdot 64$	(12)
,, ",	$298 \cdot 1$	$6 \cdot 26$	$6 \cdot 19$	(12)
,	400	$3 \cdot 52$	$3 \cdot 46$	(12)
", ",	500	2.55	$2 \cdot 47$	(12)
," ,	600	2.08	1.99	(12)

* These temperatures are assumed to be 72° F., i.e., the usual room temperature in the U.S.
(1) Weber, Wahl, and Urey, J. Chem. Physics, 1935, 3, 129.
(2) Thode, Graham, and Ziegler, Canadian J. Res., 1945, 23 B, 40; Kirschenbaum and others, in the press. The latter authors have extrapolated the values of Thode et al. to zero concentration of NH_{8} in the solution. The constant $1 \cdot 006$ is the average of those reported by these authors.
(3) Cohen, J. Chem. Physics, 1940, 8, 588.
(4) Hutchison, Stewart, and Urey, ibid., p. 532.
(5) Nier and Gulbransen, J. Amer. Chem. Soc., 1939, 61, 697; Murphey and Nier, Physical Rev.; 1941, 59, 771.
(6) Dole and Slobod, J. Amer. Chem. Soc., 1940, 62, 471.
(7) Urey, Aten, junr., and Keston, J. Chem. Physics, 1936, 4, 622.
(8) Taylor and Urey, ibid., 1938, 6, 429.
(9) Lewis and MacDonald, J. Amer. Chem. Soc., 1936, 58, 2519.
(10) Bonhoeffer, Z. Elektrochem., 1934, 40, 469.
(11) Crist and Dalin, J. Chem. Physics, 1934, 3, 735.
(12) Black and Taylor (loc. cit.) give a formula covering data between $16^{\circ} \mathrm{c}$. and $302.9^{\circ} \mathrm{C}$. from which the "experimental" data of the table have been calculated. They estimate their probable errors as ± 0.02 to $\pm 0 \cdot 12$ and thus theory and experiment are in agreement within these limits.
experiments under conditions which must give results lower than the true values. It is seen that good agreement is secured. The results of Thode and his co-workers are based on very careful work.

Vapour Pressures of Isotopic Compounds.
The ratios of vapour pressures of hydrogen and deuterium and their compounds have been extensively studied. ${ }^{27}$ Similar differences in vapour pressures in the case of isotopic molecules of other elements exist, though the differences are much smaller than in the case of protium and deuterium compounds. Such differences have been determined in only a few cases and are recorded in Table XV together with those for protium and deuterium oxide and the protium and deuterium ammonias for comparison. In the last column are given the temperatures at which the vapour pressures are equal. These are calculated from the formulæ in all cases except for $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$. This "crossing-over phenomenon" seems to be a regular feature of all such ratios of vapour pressures. Bernal and Tamm ${ }^{28}$ have assumed that a frequency of libration of the water molecule in ice of $477 \mathrm{~cm} .^{-1}$ exists and that this accounts for the differences in vapour pressures of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$. However, it does not account for the "crossing-over phenomenon" and it seems clear that much more extensive theories to account for the ratio of vapour-pressure curve are required. It is interesting to note that this same " crossing-over phenomenon" exists for some exchange reactions as mentioned before, and that it can be calculated in these cases though no obvious similar method can be applied to the vapour pressures.

The vapour pressures of $\mathrm{N}_{2}{ }^{14}$ and $\mathrm{N}_{2}{ }^{15}$ suggest the possibility of an excellent separation method for the oxygen isotopes. Since carbon monoxide and nitrogen have such similar physical properties, similar differences in vapour pressure might be expected between $\mathrm{C}^{12} \mathrm{O}^{16}$ and $\mathrm{C}^{12} \mathrm{O}^{18}$ for which a difference of two atomic weight units exists as in the case of the nitrogens. If a difference of 1% in vapour pressures exists, distillation of carbon monoxide should furnish the most effective method for the separation of these isotopes and at the same time increase the concentration of the carbon isotope to some extent.

Also, if the predicted difference in vapour pressures of $\mathrm{B}^{10} \mathrm{Cl}_{3}$ and $\mathrm{B}^{11} \mathrm{Cl}_{3}$ can be confirmed, the distillation of boron chloride should be a most effective method for separating the isotopes of boron.

Compounds.	a.	b.	$\Delta^{2} H$.	$\Delta T . P$.	$\frac{p_{1}}{p_{2}} \text { (b.p.). }$	$T\left(p_{1}=p_{2}\right)$.	Ref.
$\mathrm{N}_{2}{ }^{14}, \mathrm{~N}_{2}{ }^{15}$ (liq.)	0.7230	-0.005822	$3 \cdot 33$	0.058	1.0081	124°	(1)
$\mathrm{N}^{14} \mathrm{H}_{3}, \mathrm{~N}^{15} \mathrm{H}_{3}$ (liq.) \ldots	$1 \cdot 3665$	-0.004622	$6 \cdot 25$	$0 \cdot 188$	$1 \cdot 00246$	298	(2)
$\mathrm{NH}_{3}, \mathrm{ND}_{3}$ (liq.)	$46 \cdot 25$	-0.14003	216	$3 \cdot 11$	$1 \cdot 110$	$330 \cdot 3$	(1)
$\mathrm{NH}_{3}, \mathrm{ND}_{3}$ (sol.)	49.69	-0.1305	$227 \cdot 5$	$3 \cdot 11$		-	(1)
$\mathrm{H}_{2} \mathrm{O}^{16}, \mathrm{H}_{2} \mathrm{O}^{18}$ (liq.) ...	2.74	-0.0056	13	-	1.0046	490	(3)
$\mathrm{H}_{2} \mathrm{O}, \mathrm{D}_{2} \mathrm{O}$ (liq.)	\dagger	\dagger	406*	3•8	1.051	497 (obs.)	(4)

* Value at the triple point according to Riesenfeld and Chang.
\dagger Miles and Menzies give the following equation for the ratio of vapour pressures :
$\log \frac{p_{1}}{p_{2}}=\frac{268.8426}{T}-16.998671+7.49716 \log T-9.7611 \times 10^{-3} T+4.4288 \times 10^{-6} T^{2}$.
(1) Kirschenbaum and Urey, J. Chem. Physics, 1942, 10, 706.
(2) Thode, J. Amer. Chem. Soc., 1940, 62, 1581.
(3) Riesenfeld and Chang, Z. physikal Chem., 1936, B, 33, 127.
(4) Idem, ibid., p. 120; Miles and Menzies, J. Amer. Chem. Soc., 1936, 58, 1068.

In many cases the equilibrium constants of exchange reactions involving liquid water rather than gaseous water are desired. The equilibrium constants of Table V and Table X involving water must be increased in the horizonal rows and decreased in the vertical columns in the ratio of the vapour pressures of $\mathrm{H}_{2} \mathrm{O}^{16}$ and $\mathrm{H}_{2} \mathrm{O}^{18}$ or the square root of the ratio of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$ in order to secure the constants for liquid water. These ratios at temperatures (к.) $273 \cdot 1^{\circ}, 298 \cdot 1^{\circ}$, and 400° are for $\mathrm{H}_{2} \mathrm{O}^{16}$ and $\mathrm{H}_{2} \mathrm{O}^{18}, \mathrm{I} \cdot 011, \mathrm{I} \cdot 008$ and $\mathrm{I} \cdot 003$, and for $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}, \mathrm{I} \cdot 102, \mathrm{l} \cdot 074$, and $1 \cdot 017$, respectively.

The Geological Abundances of the Carbon and Oxygen Isotopes.

Dole and Nier and their co-workers have determined the ratio of the oxygen and carbon isotopes in various geological deposits. The carbonates are of particular interest in connection with the calculations presented here. It is not possible to calculate the Q_{2} / Q_{1} values for the carbon and oxygen isotopes in the carbonates with certainty, for the formulæ for the vibration
frequencies using a quadratic formula for the potential energy ${ }^{29}$ require five constants for the determination of four frequencies and none of the central force or valence force formulæ gives satisfactory results since the force constants calculated from the observed frequencies are complex. Even if satisfactory agreement were secured, there would be no certainty that the isotopic shifts in frequencies calculated would be correct, as is also true in other cases. In view of this difficulty, another approach to the problem has been used. ${ }^{30}$

The experimental facts are briefly that O^{18} is more abundant in limestones than in water by a factor of $1 \cdot 035$, and C^{13} is also more abundant in carbonates of all geological ages including the present than in atmospheric carbon dioxide, by a factor of 1.013 to 1.022 , as shown by Nier. There is a slight disagreement between the results of Nier and Gulbransen and of Murphy and Nier. ${ }^{31}$

No satisfactory calculation of the constants for the exchange constants for the reactions

$$
\begin{equation*}
\frac{1}{2} \mathrm{C}^{13} \mathrm{O}_{2}+\frac{1}{3} \mathrm{C}^{12} \mathrm{O}_{3}==\frac{1}{2} \mathrm{C}^{12} \mathrm{O}_{2}+\frac{1}{3} \mathrm{C}^{13} \mathrm{O}_{3}= \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{O}^{18}+\frac{1}{3} \mathrm{CO}_{3}{ }^{16=}=\mathrm{H}_{2} \mathrm{O}^{16}+\frac{1}{3} \mathrm{CO}_{3}{ }^{18=} \tag{15}
\end{equation*}
$$

can be made, but it is possible to ask whether the two observed values are consistent with each other. There is no difficulty in calculating the isotopic shifts for frequencies v_{1} (symmetrical vibrations of the oxygen atoms in the plane of the molecule) and v_{2} (vibration perpendicular to the plane of the molecule), but the doubly degenerate frequencies ν_{3} and v_{4} cannot be calculated since three constants are required in the potential-energy functions.

Rosenthal shows that the formula for the frequencies v_{3} and ν_{4} is

$$
\begin{equation*}
m^{2} \lambda^{2}-m \lambda\left(\frac{1}{3} A / \mu+D\right)+(1 / \mu)\left(A D-E^{2}\right)=0 \tag{16}
\end{equation*}
$$

where the roots of this equation, λ_{3} and λ_{4}, are $4 \pi^{2} \nu_{3}{ }^{2}$ and $4 \pi^{2} v_{4}{ }^{2} ; m$ is the mass of the oxygen atom and $\mu=M /(M+3 m), M$ being the mass of the carbon atom. Solving for λ_{3} and λ_{4} and forming

$$
\frac{\partial \ln \lambda_{3}}{\partial M}, \frac{\partial \ln \lambda_{4}}{\partial M}, \frac{\partial \ln \lambda_{3}}{\partial m} \text { and } \frac{\partial \ln \lambda_{4}}{\partial m},
$$

it is easily possible to eliminate all force constants between the expressions

$$
\frac{\partial \ln \lambda_{3}}{\partial M} \text { and } \frac{\partial \ln \lambda_{4}}{\partial m} \text { and between } \frac{\partial \ln \lambda_{4}}{\partial M} \text { and } \frac{\partial \ln \lambda_{4}}{\partial m} .
$$

Then, replacing $\frac{\partial \ln \lambda_{3}}{\partial M}$, etc., by the approximate values $\frac{\Delta \lambda_{3}}{\Delta M \lambda_{3}}$, etc., the following relations are secured :
and

$$
\begin{align*}
& -\left(\frac{\Delta v_{3}}{v_{3}}\right)_{0}=\frac{\Delta m}{2 m}+\frac{M \Delta m}{m \Delta M}\left(\frac{\Delta v_{3}}{v_{3}}\right)_{c} . \tag{17}\\
& -\left(\frac{\Delta v_{4}}{v_{4}}\right)_{0}=\frac{\Delta m}{2 m}+\frac{M \Delta m}{m \Delta M}\left(\frac{\Delta v_{4}}{v_{4}}\right)_{C} . \tag{18}
\end{align*}
$$

where the Δv^{\prime} s are negative quantities when the Δm and ΔM are positive. ${ }^{31 a}$ By using the last term of equation (16) and noting that it is $\dot{m}^{2} \lambda_{3} \lambda_{4}$, we get,

$$
\ln \lambda_{3} \lambda_{4}=-2 \ln m+\ln (M+3 m)-\ln M+\ln \left(A D-E^{2}\right)
$$

By expanding the right-hand side of this equation in terms of Δm or ΔM and substituting numerical values for m and M, we secure

$$
\begin{align*}
& \left(\frac{\Delta v_{3}}{v_{3}}\right)_{0}+\left(\frac{\Delta v_{4}}{v_{4}}\right)_{0}=-0.0703 \tag{19}\\
& \left(\frac{\Delta v_{3}}{v_{3}}\right)_{C}+\left(\frac{\Delta v_{4}}{v_{4}}\right)_{C}=-0.031667 \tag{20}
\end{align*}
$$

and
Urey and Greiff used frequencies calculated by Dr. Rosenthal for $\mathrm{C}^{13} \mathrm{O}_{3}=$ and these frequencies agree with the requirement of equation (20). It is possible to choose values for $\left(\frac{\Delta v_{3}}{v_{3}}\right)_{C}$ and $\left(\frac{\Delta v_{4}}{v_{4}}\right)_{C}$ consistent with equation (20) and then calculate values for $\left(\frac{\Delta v_{3}}{v_{3}}\right)_{0}$ and $\left(\frac{\Delta v_{4}}{v_{4}}\right)_{0}$. From these quantities we can now calculate the Q_{2} / Q_{1} values and from them and the values of Q_{2} / Q_{1}
for $\mathrm{H}_{2} \mathrm{O}^{18}-\mathrm{H}_{2} \mathrm{O}^{18}$, and $\mathrm{CO}_{2}{ }^{18}-\mathrm{CO}_{2}{ }^{18}$ the equilibrium constants for the reactions (14) and (15). Table XVI gives the results of such a calculation for three arbitrary choices of $\left(\frac{\Delta v_{3}}{v_{3}}\right)_{C}$, the one choice 0.03109 being that secured by Rosenthal, and for two temperatures $273 \cdot 1^{\circ} \mathrm{K}$. and $298 \cdot{ }^{\circ} \mathrm{K}$.

Table XVI.

$\left(\frac{\Delta \nu_{3}}{\nu_{3}}\right)_{c}$	$0 \cdot 03107$	0.030	0.0285	$\left(\frac{Q_{2}}{Q_{1}}\right)_{\sigma}(273 \cdot 1)$	1-2406	1.2358	1-2291
$\left(\frac{\nu_{\nu_{4}}}{\nu_{4}}\right)_{0}$	0.000576	0.001667	0.003167	$\left(\frac{\underline{Q}_{2}}{O_{1}}\right)^{0}(273 \cdot 1)$	1-1068	1-1090	1-1120
$\left(\frac{\nu_{\nu_{3}}}{\nu_{3}}\right)_{0}$	$0 \cdot 013103$	0.014707	0.016912	$\left(\frac{Q_{2}}{Q_{1}}\right)_{c}^{0}$ (298.1)	1-2097	$1 \cdot 2057$	1-1997
$\left(\frac{\Delta_{v_{4}}}{\nu_{4}}\right)_{0}^{0}$	0.057976	$0 \cdot 056374$	$0 \cdot 054168$	$\left(\frac{Q_{2}}{Q_{1}}\right)_{0}$ (298.1)	1.0928	1.0947	1.0979
$\left(\Delta \nu_{3}\right)_{o}$	44.68	43.11	40.95	$K_{c}(273 \cdot 1)$	1.0195	1.0156	1.0101
$\left(\Delta \nu_{4}\right) c$	0.41 18.83	$\stackrel{1.19}{21.13}$	2.26 24.30	$K_{o}(298 \cdot 1)$	1.0158	1.0123	1.0073
$\left(\Delta \nu_{3}\right)_{0}$ $\left(\Delta \nu_{4}\right)_{0}$	18.83 41.40	21.13 40.25	$24 \cdot 30$ 38.68	$K_{0}(273 \cdot 1)$ $K_{0}(298 \cdot 1)$	1.0304 1.0245	1.0325 1.0261	$\xrightarrow[1.0288]{1.0353}$

Dole's value for the difference in density of water from the tap at Northwestern University and water prepared from carbon dioxide from Grenville limestone is $7.9 \mathrm{p} . \mathrm{p} . \mathrm{m}$. or a ratio of isotopes of 1.0356 greater than his standard water. If we assume that fresh water has the same composition as water vapour from the oceans, then this is directly the ratio which we have calculated. This assumption seems to be in as close accord with experimental determination of the differences in density between ocean water and fresh water as any other. Nier's values for the enrichment of C^{13} in carbonates range from $\mathrm{l} \cdot 013$ to $\mathrm{l} \cdot 02 \mathrm{l}$. We will take $\mathrm{I} \cdot 0175$ as a reasonable value. Then the calculations of Table XVI for $0^{\circ} \mathrm{c}$. indicate that the values for $\left(\Delta v_{3} / v_{3}\right) c=0.030$ are best, but both are lower than the experimental values. Also, the values calculated at 25° c. are lower, but also $\left(\Delta \nu_{3} / \nu_{3}\right)_{C}=0.030$ gives the best fit to the data. Hence this value is chosen as the best fit with experiment and all Q_{2} / Q_{1} ratios of Tables VIII and X are made on this basis.

The discrepancy between the calculated and the observed values is not surprising in view of the neglect of anharmonic terms, and the application of partition functions for gaseous substances to the solid state. It seems unnecessary at present to suggest other explanations for the disagreement. It may be noted that the organisms which lay down carbonate use oxygen for their metabolic processes which contains more O^{18} than would be in equilibrium with water, but according to present beliefs in regard to biological oxidation the oxygen of the carbon dioxide produced comes from the water and, hence, no increase in O^{18} content should come from this source.

These calculations suggest investigations of particular interest to geology. A change from $0^{\circ} \mathrm{c}$. to $25^{\circ} \mathrm{c}$. should change the O^{18} content of carbonate by 1.004 relative to liquid water and the C^{13} content by $1 \cdot 003$. Accurate determinations of the O^{18} content of carbonate rocks could be used to determine the temperature at which they were formed. Since the relative abundances of isotopes have been determined by Dole with a probable error of less than 0.002 and Thode has made mass-spectrometric measurements with the same probable error, it is possible to determine such a temperature within $12^{\circ} \mathrm{C}$. Nier has developed a mass spectrometer which will determine these ratios with an error of ± 0.001 and very probably less, and thus an error in temperature of only $6^{\circ} \mathrm{C}$. or less is possible. This would be a very satisfactory error in temperature considering the times to which they may refer. At higher temperatures the coefficient becomes smaller, but still it may be possible to determine temperatures with sufficient precision to supply valuable data on a very difficult problem.

There are many questions which arise in regard to this suggestion in addition to whether animals lay down carbonates in equilibrium with water. It is not certain that the carbonates once deposited do not exchange their oxygen with ground water at a temperature different from the original or of isotopic composition different from that of sea water. Diffusion processes in carbonate rocks must be slow but the carbonates may be porous and finely divided. Such questions are all subject to experimental investigation, as is also the experimental determination of the true temperature coefficient. Even the present calculation and experimental observations indicate that the earth's temperature has not changed greatly in the last odd billion years. Also, the O^{18} content of carbonates deposited in fresh water should be less than that deposited in sea water and might be used to distinguish fresh and salt-water deposits. ${ }^{32}$ The use of
the C^{13} content of rocks would be more difficult because of the smaller enrichment and also because the geological history of carbon must be far more complex than that of oxygen. While the oxygen of the oceans constitutes a very large reservoir for the deposition of carbonate and hence has not changed its isotopic composition with time, carbon is a much rarer element and the carbon dioxide of the air and the ocean is part of the complex biochemical carbon cycle of Nature. However, the abundance of C^{13} in the rocks, if sufficiently accurately determined, might give additional data on the amount of carbon dioxide in the air during past epochs, particularly if combined with accurate temperature determinations by the use of the O^{18} content of the carbonates.

The oxygen isotopic abundances seem to be best suited for the determination of temperatures. First, there is the large reservoir of oxygen in the oceans which cannot have changed in isotopic concentrations during geological times. Secondly, the ideal isotopic solutions both solid and liquid make possible continuous variations of composition with temperatures. Thirdly, it is possible to determine deviations in isotopic abundances with considerable precision. Fourthly, oxygen forms relatively stable compounds which might be expected to remain unchanged for long periods of time. Ordinary chemical equilibria do not meet these conditions. The hydrogen compounds fail with respect to the third and the fourth point. Other elements fail with respect to the first and, hence, are not suitable. Calcium is widely distributed in Nature but fails with respect to the first point.

Dole has studied the relative abundances of the oxygen isotopes in iron ores and finds but a slight difference between them and the abundances in fresh water. A determination of the relative abundances in freshly deposited iron oxide and a comparison of these with geological deposits might give information in regard to the conditions under which such deposits were laid down.

Other oxygen compounds besides carbonates and iron oxides are available for similar studies. The exchange between sulphate and water shows a similar temperature coefficient to that between carbonate and water, and similar coefficients for the phosphate and water and the silica and water exchanges are to be expected. These last two are particularly interesting because animals and plants deposit both of these substances and also since silica has been deposited inorganically from solutions. In some cases connate water has been preserved, thus supplying both phases for investigation.

Nier and his co-workers have found that C^{13} is rarer in carbon derived from plants than it is in carbon dioxide of the air or carbon from the carbonate rocks. Such variations must result from biochemical processes which are far more complex than those considered here, and it seems that they are probably not due to thermodynamic equilibria alone but rather to differences in the kinetics of such processes. Nevertheless, the variation of kinetic processes with temperature may also result in different abundances of the isotopes. It seems probable that plant carbon compounds synthesised at different temperatures may contain varying amounts of C^{13}. Again, this possibility is subject to experimental investigation. It would be interesting indeed to know not only the mean temperature but also the variations of temperature on an ancient beach or in the forests where coal was deposited and whether a prehistoric animal had warm blood or not. However, too much optimism is not justified, for all the thermometers may be destroyed.

The values of $\left(\Delta v_{3}+\Delta v_{4}\right)$ for the carbon isotopes can vary from $45 \cdot 5$ to $22 \cdot 6$, and for the oxygen isotopes from 59.6 to $93 \cdot 3$, and hence wide variations of equilibrium constants may be secured all consistent with the general equation, and since our choice of $\left(\Delta v_{3} / \nu_{3}\right)_{C}$ is near the maximum and $\left(\Delta v_{4} / v_{4}\right)_{C}$ is near the minimum value, it may be that similar extreme cases may occur in the case of other molecules. Hence, all calculations of this kind in which less independent force constants are used to calculate the frequencies than the number required for the potential-energy function using all quadratic terms may be in error by substantial amounts. This statement applies to all polyatomic molecules considered except $\mathrm{CO}_{2}, \mathrm{HCN}$, $\mathrm{NH}_{4}{ }^{+}$, and $\mathrm{H}_{2} \mathrm{O}$, for which all constants are known.

The Relative Abundances of the Oxygen Isotopes in Air and Water.

Extensive studies in regard to the relative abundances of the oxygen isotopes in the oxygen of the air and natural waters of the earth have been reported. Dole ${ }^{33}$ first reported that water made from oxygen of the air was more dense than fresh water by 6.6 parts per million. This difference has been confirmed by other workers. ${ }^{34}$ There is some disagreement in regard to the difference in density of fresh water and sea water due to the O^{18} content, but the values reported indicate about 2 parts per million, which is in reasonable agreement with the relative vapour pressures of $\mathrm{H}_{2} \mathrm{O}^{16}$ and $\mathrm{H}_{2} \mathrm{O}^{18}$, assuming that fresh water is less dense because it results from
evaporation of sea water. Again, assuming that fresh water has the composition of water vapour in equilibrium with ocean water, Dole's observed difference should agree with that calculated here. The equilibrium constants for exchange between oxygen and gaseous water from Table X at $273 \cdot 1^{\circ} \mathrm{K}$. and $298 \cdot 1^{\circ} \mathrm{K}$. are $\mathrm{l} \cdot 017$ and 1.014 respectively, while Dole's observed value corresponds to $1 \cdot 030$, and hence agreement with the assumption of equilibrium between air oxygen and ocean water is not secured. If equitibrium with fresh water is assumed, the disagreement is even greater. These calculated values are considerably less than those calculated by Urey and Greiff, the change being due to new values for the frequencies of the water molecule. Since the constants for $\mathrm{H}_{2} \mathrm{O}$ and O_{2} are known in complete detail, it does not seem probable that the calculated values will be altered much by future changes in these constants. Other explanations for this effect have been proposed and are reviewed by Kamen ${ }^{35}$ and since the calculations here contribute nothing new to the previous discussion, no review of the problem will be made here.

The Atomic Weights of the Elements.

The variations in relative abundances of the isotopes of the elements cause corresponding variations in the chemical atomic weights. These are small in all cases but have been observed in the case of hydrogen and oxygen and should be observable in the case of chlorine. The observed constancy of the atomic weights in the case of these elements must be due to the selection of the same source for the element and the careful duplication of purification procedures. The largest changes in atomic weights to be expected from the equilibrium constants given in the tables for the various elements are given in Table XVII. Since the standard of chemical atomic weights varies, the same uncertainty enters into all the atomic weights. Fortunately the variability is low and in fact so low that no important error in chemical work will occur. The calculated change in the atomic weight of chlorine is surprisingly large.

Table XVII.
Calculated Maximum Variations in Atomic Weights.

Hydrogen*		$0 \cdot 00047$	Nitrogen		$0 \cdot 00016$
Lithium		$0 \cdot 0022$	Oxygen		$0 \cdot 0023$
Boron		0.016	Chlorine		0.031
Carbon		$0 \cdot 0014$	Bromine		0.004

* In this case the water-hydrogen equilibrium at $0^{\circ} \mathrm{c}$. is used rather than the water-potassium hydride equilibrium.

Application to the Separation of Isotopes.

During the past twenty-five years several interesting methods for the separation of isotopes have been devised, including the centrifugal, electromagnetic, and thermal and pressure diffusion of gases, and the electrolytic mobility method. These differences in chemical properties furnish another method for effecting such separations. Like all chemical methods, they are very specific, so that each element presents a separate and distinct research problem. Countercurrent methods are necessary in order to secure large changes in coricentration. These require two-phase systems and necessitate some convenient reflux reaction at the end of the apparatus where the desired isotope concentrates. When these conditions can be met, these chemical methods constitute very effective means for separating isotopes in quantity. Exchange reactions have been used for the concentration of $\mathrm{D}, \mathrm{Li}, \mathrm{C}^{13}, \mathrm{~N}^{15}$, and S^{34} by reactions listed in Table XIV. ${ }^{36}$ Also the differences in vapour pressures of isotopic compounds have been utilised for the concentration of D and $\mathrm{O}^{18 .}{ }^{37}$ Unless the fractionation factors are about $1 \cdot 01$ or greater, these methods are difficult to use both because of the large size of the apparatus required and the expense of operation and because the times required for the apparatus to reach the steady state appropriate for continuous production become very large.

Conclusion.

Before the discovery of isotopes, it was generally assumed that all atoms of an element were identical in all respects. With their discovery it was evident that such atoms may differ in atomic weights, but it was believed that their chemical and physical properties were identical except for those properties directly related to mass such as densities of gases and condensed phases, rates of diffusion and evaporation, and others of this kind. As a result of the theoretical and experimental studies reviewed in this paper, we now know that isotopes and isotopic compounds differ in their thermodynamic properties. These differences are small except in the case of the hydrogens and they generally decrease with increasing atomic weight. These
small differences make possible the concentration and separation of the isotopes of some of the elements and may have important applications as a means of determining the temperatures at which geological formations were laid down.

My best thanks are due to Mr. L. S. Myers for his help in making the many calculations recorded in the tables of this paper.

1 Amer. J. Sci., 1906, 22, 537; 1907, 24, 370.
${ }^{2}$ Keetman, Jahrb. Radioaktivität, 1909, 6, 265 ; Marckwald and Keetman, Ber., 1908, 41, 49; see also Hahn, Ber., 1907, 40, 4415.
${ }^{3}$ Wien. Ber., 1910, iia, 119, 1011.
${ }^{4}$ Ber., 1910, 43, 3420.
s J., 1911, 99, 72.
${ }^{8}$ Phil. Mag., 1919, 37, 523; 38, 173.
${ }^{7}$ Proc. Roy. Acad. Amsterdam, 1931, 34, 42; 1934, 37, 615; 1935, 38, 809.
${ }^{8}$ Physical Rev., 1931, 39, 164; 1932, 40, 1.
${ }^{9}$ J. Amer. Chem. Soc., 1933, 55, 2616.
10 J. Chem. Physics, 1933, 1, 137.
11 Proc. Roy. Soc., 1934, A., 144, 467.
12 J. Amer. Chem. Soc., 1935, 57, 321.
${ }^{13}$ Scott, Brickwedde, Urey, and Wahl, J. Chem. Physics, 1934, 2, 454 ; Clusius and Bartholomé, Z. physikal. Chem., 1935, B, 30, 237; Scott and Brickwedde, Bull. Amer. Physical Soc., 1935, 10, 9.
14 Libby and Barter, J. Chem. Physics, 1942, 10, 184.
${ }^{15}$ Bijl, Physica, 1937, 4, 329; Hobbs, J. Chem. Physics, 1939, 7, 318.
${ }^{16}$ See, for example, Mayer and Mayer, " Statistical Mechanics," John Wiley and Company, New York (1940), for a complete discussion of these functions and their derivation.

17 Redlich, Z. physikal. Chem., 1935, B, 28, 371; see also W. R. Angus et al., J., 1936, 971. This theorem holds for each symmetry type as well as for all vibrations as stated here.
18 Waldman (Naturwiss., 1943, 31, 205) has made a similar expansion of this function. Bigeleisen and Mayer (J. Chem. Physics, in the press) have expanded the function to secure

$$
\ln \frac{Q_{2}}{Q_{1}}=\ln \frac{\sigma_{1}}{\sigma_{2}}+\Sigma_{i}\left(-\frac{1}{u_{i}}+\frac{1}{2}+\frac{1}{1-\mathrm{e}-u_{i}}\right) \Delta u_{i}
$$

and they have calculated tables giving values of the function in the parenthesis for values of u usually encountered. I am indebted to them for the use of these tables for many of these calculations.
19 Proc. Camb. Phil. Soc., 1928, 24, 280.
${ }^{20}$ Ibid., 1933, 29, 142, 407.
21 J. Chem. Physics, 1934, 2, 65.
${ }^{22}$ Chem. Reviews, 1936, 18, 277.
${ }^{23}$ Urey and Greiff, loc. cit., ref. (12).
24 Loc. cit., ref. (10).
25 Farkas and Farkas, Trans. Faraday Soc., 1934, 30, 1076; Bonhoeffer and Rummel, Naturwiss., 1934, 22, 45 ; Bonhoeffer, Z. Elektrochem., 1934, 40, 469.
${ }^{26}$ J. Chem. Physics, 1943, 11, 101 ; Black and Taylor, ibid., p. 395.
27 See "Chemie der Deuteriumverbindungen," Tagungshefte der Deutschen Bunsen-Gesellschaft, p. 21 ff . (1938), for a review of these data.

28 Nature, 1935, 135, 229.
${ }^{29}$ Rosenthal, Physical Rev., 1935, 47, 236.
${ }^{30}$ I am indebted to Dr. Edward Teller and Dr. Maria G. Mayer for calling this method to my attention.
${ }^{31}$ The former authors report values of the $\mathrm{C}^{13} / \mathrm{C}^{12}$ ratio from 1.013 to 1.022 above that for the carbon dioxide of the air for limestones, clam-shell, and sodium carbonate, while the latter authors report an average of 1.021 with no trend which they believe to be significant. The variation is probably not significant but, as we shall see, it is more difficult to account for the larger values. The variation is probably due to variations in the C^{13} content of air carbon dioxide, this variation being due to the low C^{13} content of coal and the presence of carbon dioxide from coal in the samples of air investigated.
${ }^{31 a}$ In using equations (17) and (18) it is best to use average values for m and M, that is, 17 and $12 \cdot 5$ for oxygen and carbon respectively. It is possible to secure exact values for the frequencies of the isotopic oxygen molecule from assumed self-consistent values for the isotopic carbon molecule. Also, the frequencies of the $\mathrm{C}^{12} \mathrm{O}_{2}{ }^{16} \mathrm{O}^{18=}$ molecule can be calculated in a similar way. Because of the errors due to unknown anharmonic terms, such calculations are hardly justified.
${ }^{32}$ This possibility was discussed by Professor Paul Niggli of Zürich when the author discussed this subject at the University of Zurich.
${ }^{33}$ J. Amer. Chem. Soc., 1935, 57, 2731; J. Chem. Physics, 1935, 4, 268.
${ }^{34}$ Greene and Voskuyl, J. Amer. Chem. Soc., 1936, 58, 693; Hall and Johnson, ibid., p. 1920 ; Jones and Hall, ibid., 1937, 59, 259; Smith and Matheson, J. Res. Nat. Bur. Stand., 1936, 17, 625.
${ }^{35}$ Bull. Amer. Mus. Nat. Hist., New York, 1946, 87.
${ }^{36}$ See references given in the table. Also Smyth, "Atomic Energy for Military Purposes," Princeton University Press (1945).
${ }^{37}$ Pegram, Huffman, and Urey, Ind. Eng. Chem., 1937, 29, 531 ; Thode, Smith, and Walking, Canadian J. Res., 1944, 22 B, 127. Also, Dr. Merle Randall has used this method for concentrating these isotopes.

[^0]: * Rotation corrections were not made for any of the values for water listed in this table because the rotation constants for the mixed molecules are now known, and better values of the ratios are obtained if no corrections are made than if they are made for only some of the molecules.

